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Abstract—A major challenge in modern breast cancer
treatment is to unravel the effect of drug activity through the
systematic rewiring of cellular networks over time. Here, we
illustrate the efficacy and discriminative power of our
integrative approach in detecting modules that represent the
regulatory effect of tamoxifen, widely used in anti-estrogen
treatment, on transcriptome and proteome and serve as
dynamic sub-network signatures. Initially, composite networks,
after integrating protein interaction and time series gene
expression data between two conditions (estradiol and estradiol
plus tamoxifen), were constructed. Further, the Detect Module
from Seed Protein (DMSP) algorithm elaborated on the graphs
and constructed modules, with specific ‘seed’ proteins used as
starting points. Our findings provide evidence about the way
drugs perturb and rewire the high-order organization of
interactome in time.

1. INTRODUCTION

Recent systems biology studies have shifted their interest
to rationalize complex diseases, from analyzing individual
biological components to networks of molecules.
Accumulating evidence suggests that alterations in the
apparent modularity (i.e. the existence of interacting,
separable and functional groups of genes/proteins) governing
these networks enable the identification of sub-network
disease biomarkers. These graph-theoretic approaches
assisted significantly in the comprehension of cancer
pathogenesis, progression and metastasis [1], establishing
thus the necessity of the Systems Biology field in clinical
practice (Systems Medicine). The ultimate goal of Systems
Medicine is to provide diagnostic and prognostic biomarkers,
identify disease subtypes and set the optimized treatment,
leading thus to a better and more personalized medicine.

The motive of this study is multifarious; the main intrigue
lies in the fact that the majority of breast cancer patients that
express estrogen-receptor alpha (ERa) usually undergo
tamoxifen treatment, with no good outcome in all cases; also,
obscure remains the scene where similar gene expression
patterns among patients with regard to known gene markers
cannot guarantee similar phenotype (i.e. disease outcome).
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Late studies implicated that alterations in gene expression
might perturb the higher-level organization of the
interactome, affecting so the disease outcome [2]. To
investigate this hypothesis, we explored how the temporal
dynamics of transcriptional behavior in a specific treatment
scheme (estradiol and estradiol plus tamoxifen) reforms the
protein interactome. Our target was to reveal how
interactome ‘areas’, in the form of modules/sub-networks, are
perturbed in response to drug over time. To achieve this goal,
we integrated gene expression and protein-protein interaction
(PPI) data, a strategy recently established as fruitful in
providing information of specific genes/proteins on disease-
specific pathophysiology. Towards this orientation, many
studies have combined multiple data types [3, 4]; works like
[5] scored pathways based on the similarity of the expression
values of the participating pathway genes. For example,
interesting studies like [6] detected sub-networks of highly
co-expressed genes on the protein graph by starting from a
random gene with the use of a greedy algorithm, which
cannot guarantee completeness. Other studies like [7]
integrated gene expression, PPl and phenotype data to
identify dense modules with the provision of incorporating
additional constraints from a variety of datasets. However,
this approach is primarily designed for finding protein
complexes from protein interaction data, is sensitive to gene
expression noise and promotes the detection of dense
modules.

In this paper, we illustrate the efficacy of our integrative
methodology [8] in capturing the dynamic modular
transitions in response to tamoxifen. To achieve this goal, we
reinforced the protein graph structure, via weighting scheme,
with time series microarray data descending from an in vivo
study [9]. Next, the Detect Module from Seed Protein
(DMSP) algorithm defined modules on the composite protein
network starting from specific ‘seed’ proteins. An important
feature of this algorithm is that the overlaid gene expression
information, in the form of weight, reassures the entrance of
certain interactions into the modules, even if they are not
favored by the topology. Also, DMSP saves many
interactions among proteins that interact closely (e.g.
complexes) even if they show dissimilar or inverse
expression trends, through the rest weighted neighbors of
such an interaction.

Our time-evolving modules report that the response to
tamoxifen is a highly dynamic process and raise several
biological questions regarding the recruitment of several
known pathways. Finally, our findings corroborate towards
the integration of heterogeneous data and the detection of
discriminative temporal sub-networks that serve as hallmarks
of disease-specific states.
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II. METHODS

A. Data sets and pre-processing
We downloaded all human protein interaction data from

HPRD (http://www.hprd.org/), BioGRID
(http://thebiogrid.org/), IntAct (http://www.ebi.ac.uk/intact/)
and InnateDB  (http://www.innatedb.ca/)  databases.

Regarding gene expression data we used the raw time series
microarray data (days 1, 2, 4, 7, 14) publicly available in
NCBI's Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/) with accession number
GSE22386 [9]. In particular, we isolated for analysis only the
probe sets of genes that are present in the protein interaction
network and ended up with 3307 gene names and 14498
interactions among them. The datasets (estradiol and estradiol
plus tamoxifen treatment) were normalized after background
correction with loess normalization approach with the use of
limma package in Bioconductor [10]. The expression value
of each gene was computed by taking the average of the
corresponding probe sets and all values were normalized with
respect to dayl.

Finally, we downloaded all proteins related to breast
cancer from G2SBC (http://www.itb.cnr.it/breastcancer/) and
dbDEPC (http://lifecenter.sgst.cn/dbdepc/index.do) databases
and 883 proteins were mapped to our final gene list. This
subset defined the ‘seed’ list that was used as input to the
DMSP algorithm.

B. Weighted Graph

The initial step of the weighting scheme includes
clustering of the expression profiles of both datasets. In
detail, we clustered the temporal profiles with the use of k-
means algorithm that was able to process fast and
transparently the datasets. The clustering process was
repeated more than 100 times using random initialization,
with Euclidean metric as distance measure. The number of
clusters was appointed at 28 clusters with the use of Dunn
index.

The human protein interaction graph is represented as a
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Figure 1. Outline of DMSP algorithm in constructing a module.

graph G(V,E). The vertices are the set of unique proteins (in
our case |V|=3307) and the edges are the interactions among
the vertices (|[E[=14498). In order to add weight to an
interaction between two proteins x and y, we find the clusters
C(x) and C(y) where they belong and the corresponding
centroids K., K, of these clusters. Then, we calculate the
distance of each gene from its centroid and the distance
between the two centroids. The weight of the PPI interaction
is given by the metric:

2 2 2
W(x,y) :nl(”x—KX” +Hy—KyH )+m, HKX _KyH

||.|| represents the distance metric (in our case Euclidean). The
constants n; and n, add an extra confidence score to the
factors of the weight function. Driven by the fact that there is
noise (outliers) in the gene expression profiles, we set n;=0.3
and n,= 0.7 in order to enforce the distance between centroids
comparing to the distance of each gene from its centroid.

C. DMSP Algorithm

The algorithm operates in two phases. Initially, given a
'seed’ protein, it selects a subset of its most promising first
order neighbors, subsequently expands this initial kernel to

TABLE1l KEGG Pathway analysis of characteristic module pairs with fold change in size > 2.

Seed E, KEGG Pathway E;+Tam KEGG Pathway term
Protein Size term (pathway /P-value) Size {pathway /P-value)
ErbB signaling pathway 4.2E-17; T
cell receptor signaling pathway 6.4E- ErbB signaling pathway 4.1E-16; T cell receptor
ERBB2 159 14; Fc gamma R-mediated 76 signaling pathway 3.2E-13; Natural killer cell
phagocytosis 6.6E-14; Jak-STAT mediated cytotoxicity 4.5E-13
signaling pathway 9.5E-13
ErbB signaling pathway 6.7E-17;Jak-STAT signaling
B cell receptor signaling pathway pathway 7.8E-14; T cell receptor signaling pathway
LYN 11 2.4E-4; Fc gamma R-mediated 139 8.7E-14; Natural killer cell mediated cytotoxicity 4.0E-
phagocytosis 4.9E-4 13; Fc gamma R-mediated phagocytosis 1.9E-11; B
cell receptor signaling pathway 9.3E-11
T cell receptor signaling pathway 3.2E-14;ErbB
B signaling pathway 1.4E-13; Natural killer cell
LeK 10 131 mediated cytotoxicity 1.7E-11; B cell receptor
signaling pathway 6.3E-10
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Figure 2. Bar plots displaying the size of modules descending from 86 seed proteins (the inset bar plots show the oversized module cases). (A) The size of
E, modules in 3 time intervals (day 2—day 4: blue, day 2—day 7: green, day 2—day 14: red), (B) the size of E, plus tamoxifen modules in the
aforementioned 3 time intervals. In (C) we compare the size of E, (blue) and E; plus tamoxifen modules (red) only in day 2—day 14 interval.

accept more proteins. This expansion is based on
assumptions that take into account the internal, external,
weighted internal and weighted external degrees of the nodes,
concerning the number of neighbors for the specific protein
as well as the weights of these connections (Fig.1). A detailed
description is provided in [8]. The parameters of DMSP were
set after exhaustive trials as p; = 0.15 and p, = 0.5.

Despite the fact that the weight metric favors interactions
between genes with similar expression trends (i.e. small
weight values indicate small distance among profiles) and
thus promotes them in the topology, the DMSP algorithm
manages to ‘save’ known interactions even if their expression
profiles are inverse by incorporating information given by the
rest weighted neighbors of such interactions, during the
module construction.

III. RESULTS

Initially, after weighting the protein interaction networks
with the gene expression values from all time points and
applying the DMSP algorithm with 883 ‘seeds’ as starting
points, we ended up with 97 modules (i.e. only 97 seed
proteins led to module construction with at least two
members). Nevertheless, we isolated 86 modules with more
than 3 members (at least in one type of treatment) for further
analysis.

On second level, we zoomed into these 86 modules and
run DMSP after weighting the PPl graphs with the gene
expression values of three time intervals (day 2-day 4,
day 2—day 7 and day 2-day 14) in order to detect the
dynamic modular transitions every time a consecutive time
point is added. Given the fact that 17B-estradiol (E,)
stimulates the growth of ER positive tumors, we expected
significant rewiring in the topology of E, treated dataset as
well. Indeed, in Fig. 2A and 2B we illustrate how modules
alter in size and as seen the modules are highly dynamic in
both conditions. In Fig. 3 we provide an example in the case
of E, plus tamoxifen with HDAC1 as seed protein and
display the progressive snapshots of the module topology. It
has already been indicated that HDAC! affects breast cancer
progression in promoting cell proliferation in association
with a reduction in both ER-a protein expression and
transcriptional activity [11]. The mid interval module is
enriched in Gene Ontology (GO) terms like regulation of
nitrogen compound, chromosome organization and regulation
of cell proliferation (P-value < 3E-7). Further, we searched
for differences in size between the two conditions in the
complete time interval (Fig. 2C). Indeed, 33% of our module
pairs presented at least two-fold change in their size between
the two conditions. Zooming into this subset, we found that
in 45% of them, which displayed a three-fold change, the
larger module belonged to E, treatment, while in 7% with
fourteen-fold change the larger module belonged to E, plus
tamoxifen treatment. A hypothesis that warrants further study
is that the combination of E; and tamoxifen probably affects

5434



o . %0
o g
@ @ G e ® o
DNMT1 ) e ] @ oz M ®
@ @ CoKz v
P1 MBD @ ® L5 ®
' N ° ®
.\ .t L1 ® ® ;
. B °
e ® /

° ° == » . °
° (] L ] [ ] ]
@ - “o o
. HOA L L * o @ o

] ]
WP @ g [ ] g
2d-4d 2d-7d 2d-14d

Figure 3.Example of modular rewiring in 3 time intervals (day 2—day 4, day 2—day 7, day 2—day 14)in the E; plus tamoxifen treatment. The seed protein
(HDAC1) is marked in red and every node that is not member of the previous graph is marked in blue.

the expression behavior of many breast cancer related
proteins relative to their interacting partners, inhibiting so the
module identification in the topology in comparison to E,
condition; however, it succeeds in few cases in triggering
large paths. A characteristic example is the MCMS pair of
modules. Module construction was detected only in E, with
members: MCM2, ORC3L, ORCSL, CDC7, CDC6, ORCAL
and CDC45 genes. MCMS5 and MCM2 are components of the
replication fork, which may be responsible for a primary
response soon after treatment by reducing DNA regulation
[12]. There is also evidence that ORC3L is down-regulated in
untreated or permanently tamoxifen treated tumors, CDC7 is
over-expressed in multiple cancers, CDC6 is an estrogen
responsive gene and CDCA45 is up-regulated in proliferating
cell populations. Despite the fact that the expression windows
between the two conditions are similar, [-2.5, +0.5] and [-2,
+0.5] respectively, we observed similar expression
trajectorics in the E, case, whereas the scene changes in E,
plus tamoxifen treatment, where the expression profiles show
dissimilar or even inverse trends in time.

Further in our analysis, we calculated the overlap ratio of
members in every pair of modules descending from the same
seed protein, in the aforementioned time intervals, to identify
the time points in which the modules alter significantly in
terms of members between the two conditions. Specifically,
we used the overlap ratio metric provided in [ 13], which was
primarily designed for calculating the protein complex
coverage of modules. This metric ranges between 0 and 1,
with the latter value indicating perfect match. In Fig. 4, we
provide the scatter plots that display that day 7 is the one with
the highest modular transition.

Moving forward, we compared the graphs (in the
complete time interval) that descend after combining the
modules of each condition to search for proteins that are
absent between them. The E, graph included 482 nodes and
1482 edges, whereas the E, plus tamoxifen graph 204 nodes
and 966 edges. In particular, 329 nodes out of 482 are not
included in E, plus tamoxifen graph and 45 nodes out of 204
are not included in E,. We hypothesize that the disruption of
these proteins from the topology is translated as follows:
either the expression profiles of these proteins changed
significantly comparing to their interacting partners, thus they

failed to enter the module, or these proteins, due to a
broadened functionality repertoire, became members of other
modules that were not part of our data. The subset of 329
proteins is enriched in GO terms like cell cycle, regulation of
catalytic activity, regulation of cell proliferation, regulation
of cell death and cell differentiation, whereas the subset of 45
with terms like system development, cell motion and cell
proliferation.

Finally, in Table 1 we present the KEGG pathway
analysis of three module pairs with high fold change in size
between the two conditions. As seen, the modules are
significantly enriched in immune related pathways. Studies
have already elucidated the bilateral role of immune system
[14]. Cancer cells secrete and respond to cytokines,
chemokines and DAMPs influencing the nature and quantity
of the immune infiltrate. In order to achieve therapeutic
success, any treatment strategy should shift the balance of
pro-tumorigenic and anti-tumor immunity in favor of the
latter. Interesting observations can be extracted from the
LYN and LCK pair of modules, where the E, plus tamoxifen
module presents an enhanced recruitment of immune
response pathways. On the other side, in the case of ERBB2
module pair we found a coupling of ERbB signaling pathway
along with T cell receptor, Fc gamma R-mediated
phagocytosis and Jak-STAT pathways in E, case. The role of
ERDB cascade in breast cancer etiology and drug response
has long been implicated. Also, there is evidence regarding
the role of Jak-STAT cascade in neoplastic transformation
and tumor growth. Our findings pose questions about the way
the coupling of these pathways is associated with the reported
tumor volume increase [9]. Our results, along with other
studies that support the immunomodulatory role of tamoxifen
[15], corroborate towards the idea that this drug may serve its
therapeutic role by affecting major immune signaling
pathways.

IV. CONCLUSION

Our integrative approach is a step towards clucidating the
dynamic modularity of cellular networks in complex diseases
like breast cancer. Our methodology identified a subset of
modules that can serve as potential temporal biomarkers of
response mechanism to drug activity. Our findings offer a
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Figure 4. Scatter plots of the overlap ratio, between E, and E; plus tamoxifen modules, in 3 different time intervals (day 2—day 4, day 2—day 7, day 2—
day 14). The dashed line corresponds to the line y = x. As itis evident day 7 is the time point of significant overlap change.

first glimpse of the ‘tuning’ of protein interplay in time and
novel hypotheses for the role of genes/proteins with altered
position in the modular organization of interactome topology.

[10]
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