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Abstract— We study the nonlinear dynamics of a homo-
geneous DNA chain which is based on site-dependent finite
stacking and pairing enthalpies. We introduce an extended
nonlinear Schrödinger equation describing the dynamics of
modulated wave in DNA model. We obtain envelope bright
solitary waves with compact support as a solution. Analytical
criteria of existence of this solution are derived. The stability of
bright compactons is confirmed by numerical simulations of the
exact equations of the lattice. The impact of the finite stacking
energy is investigated and we show that some of these compact
bright solitary waves are robust, while others decompose very
quickly depending on the finite stacking parameters.

I. INTRODUCTION

The dynamics of DNA has been extensively studied during

the last decade. Particularly, the nonlinear field of sciences

pays special attention to the process that takes place at the

base pair scale [1]. The local opening of the DNA double

helix at the transcription start site is a crucial step for

the genetic code. This opening is driven by proteins but

the intrinsic fluctuations of DNA itself probably play an

important role. The dynamical properties of these bubbles

and their relations to biological functions have therefore been

the subject of many experimental and theoretical studies [2].

Note that the stacking interaction in the Dauxois-Peyrard-

Bishop (DPB) [3] model is not harmonic, but it still differs

fundamentally from that of statistical models because it does

not make reference to any characteristic energy [4]. Since its

introduction, this model was used to unravel several aspects

of melting. Joyeux and Buyukdagli (JB) [5] proposed a few

years ago a dynamical model for DNA, which is closer to

the statistical ones than the DPB model, in the sense that it

is based on site-specific stacking enthalpies and showed that

the finiteness of the stacking interaction is, in itself, sufficient

to ensure a sharp melting transition.

In the present work, we show that this finite stacking

energy interaction model supports envelope bright solitary

waves with compact support. To this end, the organization

of the paper is as follows. In sec. II, we present the model

and its equations. In sec. III, by means of the semi-discrete

approximation, we derive the extended nonlinear Schrödinger

equation governing modulated waves in the lattice. Exact

analytical solution with compact support is obtained for

this extended nonlinear Schrödinger equation in sec. IV.
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Numerical investigations are considered in order to verify

the validity and the stability of analytical predictions and we

draw our conclusions in sec. V.

II. MODEL AND EQUATION OF MOTION

The general form of the model we are considering in this

paper is

H = ∑
n

1

2m
P2

n +W (yn,yn−1)+D
(

e(−αyn)−1
)2

, (1)

where we chooce the (JB) model, i.e.

W (yn,yn−1) =
△Hn

C

(

1− e−b(yn−yn−1)
2
)

+Kb (yn− yn−1)
2 ,

(2)

∆Hn/C is a Gaussian hole of depth and the backbone

stiffness is taken as a harmonic potential of constant Kb. In

this set of equations, m is the reduced mass of the bases,

while yn is the displacement that stretches the hydrogen

bonds. The last term in Eq.(1) is the on-site Morse potential,

where D denotes the dissociation energy while the parameter

α , homogeneous to the inverse of a length, sets the special

scale of the potential. This on-site Morse potential appears

as a “substrate” potential in the model, which comes

directly from the structure of DNA. In this work, numerical

values of our parameters are those of Refs. [5], [6], that

is, m = 300 a.m.u, D = 0.04eV , α = 4.45Å−1, Kb = 10−5

eV Å−2. Including Eq.(2) in (1) yields the corresponding

equation of motion of the nth base pair.

d2yn

dt2
=

2Kb

m
(yn+1 + yn−1−2yn)+ (3)

2αD

m
e(−αyn)

(

e−αyn −1
)

+
[

(yn+1− yn)e
−b(yn+1−yn)

2

− (yn− yn−1)e
−b(yn−yn−1)

2
]

×

2b△Hn

mC
.

It is convenient for the analytical and numerical calculations

to transform these equations into a dimensionless form [7]

by defining the dimensionless variables

Yn = αyn, τ = (

√

Dα2/

m)t, (4)
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which transforms Eq.(4) in:

d2Yn

dτ2
=Cl (Yn+1 +Yn−1−2Yn) (5)

+Cnl

[

(Yn+1−Yn)
3− (Yn−Yn−1)

3
]

−ω2
g

(

Yn−
3

2
Y 2

n +
7

6
Y 3

n

)

,

where ω2
g = 2, Cl =

2
Dα2 (Kb +

b△Hn

C
) and Cnl =−

2
Dα4

b2△Hn

C
.

Note that the control parameters b and ∆Hn/C allow to fix

independently Cl and Cnl For finite amplitude of wave, non-

linearities of the system give rise to the generation of higher

harmonics. However, we are using the so-called “rotating-

wave” approximation which consists essentially in neglecting

harmonics by substituting in the equation of motion, the

solution [8], [9]

Yn(τ) = B(X ,T )eiθn +B∗(X ,T )e−iθn , (6)

where the asterisk denotes complex conjugation. The

above expression of Yn(τ) includes the fast local oscillation

through the dependence of the phase θn = kn−ωτ , and then

preserves the discrete character of the system [10], while the

dependence of the envelope part is described by the slow

amplitude variation of the function B(X ,T ) with respect to

the slow variables T = ε2τ and X = ε(n− vgτ), ε being a

small dimensionless parameter. Here the lattice spacing has

been taken as equal to unity. The parameter vg = dω
dk

is

the group velocity associated to the wave packet. The linear

oscillation frequency of the base pairs, and wave number,

are related by the dispersion equation

ω2 = ω2
g +4Cl sin2 (k/2) . (7)

As shown by Eq.(7), the linear equation has a gap ωg and

is limited by the cutoff frequency ωm =
√

ω2
g +4Cl due to

the discreteness whereas vg =
Cl sin(k)

ω . Instead of applying the

standard reductive perturbation method in the semi-discrete

limit to Eq.(6), which forbids to appreciate the role of the

nonlinear dispersion in Eq.(6), we substitute Eq.(6) into

Eq.(6), and neglect all terms in ε5 or more [8], [11].

Assuming that B(X ,T ) and all its derivative converge to

zero sufficiently rapidly as X −→±∞, The Hamiltonian H =
∫

ĤdX corresponds to invariance under translations in X ,

where the Hamiltonian density is

Ĥ = Ĥ1 + Ĥ2 + Ĥ∗
2 , (8)

with

Ĥ1 =−P |BX |
2+

Q

2
|B|4+

3l7Cnl

2ω
|BX |

4− l5

[

|B|2 |BX |
2
]

, (9)

Ĥ2 =
Cnl

ω
{

il1

2

[

|B|2 BB∗X

]

+
il2

4

[

B∗ |BX |
2

BX

]

(10)

+
il3

2

[

|BX |
2

B∗X

]

+
3l4

4

[

B2B∗2X

]

+2l6
[

B∗2B2
X

]

}.

III. BRIGHT SOLITONS WITH COMPACT SUPPORT

SOLUTION

The existence of compact wave has been rigorously proven

by Saccomandi and Sgura [12] for Hamiltonian systems, pro-

vided that an anharmonicity condition is fulfilled. To proceed

with the integration of the extended nonlinear Schrödinger

equation, we first separate the complex envelope function

and the phase shift [8] ξ (X ,T ) according to

B(X ,T ) = φ (X ,T )exp [−iξ (X ,T )] . (11)

where φ and ξ are real functions of X and T . From the

analysis of the coefficients lk with k = 1,2,3, ..7, it appears

that 8l6 = 2l5− l4. Let us look for travelling wave solutions

in the form φ (X ,T ) = φ (z) with z = (X− veT ) and linear

phase shift ξ (X ,T ) =γ
(

X− vφ T
)

, where ve and vφ are the

envelope and phase velocities, respectively. We can consider

the following equations

φT =−veφ z φX = φz, (12)

By using the drop boundary conditions

φ → 0, φz → 0 at z→±∞, (13)

we obtain

ve = 2Pγ. (14)

The integration yields the following solution in the com-

pact support:

φ(z) = B0 cos µ(z− z0), i f |(z− z0)| ≤ π/2µ, (15)

while in the non compact domain, φ(z) = 0. The parameter

µ may serve as a measure of the importance of discreteness

effect in the system. This solution indicates that the compact

bright solitary wave is characterized by amplitude B0 and

a strictly limited width L = π/µ . Moreover, z0 locates the

center of mass of the solution.

Note that Gaeta et al. [13] combine two (or more) kink

solutions to obtain a multi-kink solution, which is a special

type of multi-compacton solutions by considering a periodic

on-site potential leading to an arbitrary sequence of kinks

and anti-kinks.

The existence condition of compact bright solitary wave is

−r <Cnl < 0, (16)

with

r =
(7/6)ω2

g

12sin4 (k/2)− (1/8)(l1γ +8l6γ2 +(l2−2l3)γ
3−3l7γ4)

.

(17)

We remark that this criterion is independent of the G.V.D.

in the formation of this compact bright solitary wave.
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Fig. 1. Variation of phase velocity versus negative anharmonicity parameter
Cnl and wavenumber k. In insert, two values of wavenumber are chosen:
k = 0.28π (solid line), k = 0.24π (dashed line).

IV. DIRECT NUMERICAL ANALYSIS

In order to check if the above analytic continuum bright

soliton with compact support can survive in the discrete

lattice, different numerical simulations of the equation (4)

have been performed, using the following initial condition

Yn(t = 0) = A0 cos µ(n−n0)exp [i(k− γ)n] (18)

|(n−n0)| ≤ π/2µ

Yn(t = 0) = 0 otherwise,

obtained from the equations (6). The system has been

integrated with a fourth-order Runge-Kutta scheme with a

timestep chosen to conserve the energy to an accuracy better

than 10−6 over a complete run. The number of base pairs is

fixed at N = 600 in order to avoid any wave reflection at the

end of the molecule that can affect the creation process and

the dynamics of the localized structures.

 

Fig. 2. Temporal behavior of compacton (initial speed equal zero) spacial
profil. Magnitude A0 = 0.015, width L=50, and central cite located at n0 =
N/2. The solution is stable.

A. Stability of the compact static wave

To check the stability of the solutions over time, the solu-

tion is evolved over a very long time. First, the initial velocity

is taken to be zero. Fig.2 shows the stability of the lattice

profile of the bright soliton with compact envelope over the

time τ = 2000 (4,2× 10−12s) which is much greater than

the typical time scale of the transversal movements in DNA

(10−14s). The initial width and amplitude of compactons

 

Fig. 3. Same as in Fig.2 but the initial envelop width is now L = 22. The
initial compacton loses its shape.

are chosen to be respectively L = π/µ = 50 times the

lattice spacing, and A0 = 2B0 = 0.015 where B0 and µ
are respectively obtained analytically. As can be seen from

this figure, the initial analytic continuum compact envelope

solutions of Eq.(15) remains stable even after a very long

time in the discrete lattice. We have also considered the

compact envelope solution with width L = 22 . In this case,

the results of the numerical simulations show that although

the solutions remain stable after 500 time units, it loses its

compact support and develops some structures near its edge

after a larger time 1000 time units (it starts developing a

tail near the edge of the compacton, thereby destroying the

compact nature of the solutions, see Fig.3). It is clear that the

stability of the compacton solutions with initial speed equal

to zero, in a discrete lattice, depends crucially on its width

which measures the discreteness effects in the system.

B. Stability of the compact propagating wave

Fig.4 demonstrates that the initial compact wave can be

stable for a long time, moving slowly rightwards along

the strand in the chain. Here the initial wave is given via

(19) with a fixed width L = 50 and amplitude A = 0.012.
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Fig. 4. Time behavior of propagating compact bright solitary wave in
DNA for Cnl = −0.4, i.e. ∆Hn/C = 0.2eV and b = 4Å−2 (a) The initial
wave is the compact envelope bright solitary wave located at site n0 =
100 with amplitude A0 = 1.2×10−2, width L = 50 and wave number k =
0.26π . (b) and (c) show the wave at given times of propagation: 15000 and
30000, respectively. The wave experiences are uniform, and the propagation
is stable along the DNA lattice with a low speed.

As time goes on, the initial compact bright solitary wave

propagates without changes of its initial profile and with

the exact value of the velocity predicted by Eq.(14) as

illustrated in Fig.4, where the evolution of the compact
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Fig. 5. The decomposition of an initial compacton for the parameter Cnl =
−0.9 i.e. ∆Hn/C = 0.09eV and b = 9Å−2. An initial compact wave breaks
into a string of compactons, each of them remaining stable after its birth.

solitary wave at τ = 0, τ = 15000 and τ = 30000 are

shown. This process may correspond to energy transfer in

DNA molecules. This relative uniform and smooth envelope

has compacton-like behavior. The energy is localized in a

limited narrow region for biologically significant duration.

This energy can propagate as the bright compacton and a

large part of the energy is stored in the hydrogen bonds.

For −1 ≤ Cnl ≤ −0.4, Fig.4 demonstrates the emergence

of stable compactons out of more general initial data. The

emerging compactons are stable and preserve their initial

shape. For the original Rosenau and Hyman [14] compacton

equations, numerical investigations showed some remarkable

properties, namely whatever initial compact data were given,

they eventually evolved into compactons. We show in Fig.5

that a relatively compact wave decomposes into a sequence

of compactons whose number depends on the initial energy.

Notably for larger energy, two emitted compactons appear

and propagate to the left.
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Fig. 6. Time evolution of the perturbated moving compact solitary wave,
modulated at a wave number q = 0.5π . The amplitude and the width of the
initial wave are respectively A= 0.016 and L= 50. The perturbated compact
solitary wave appears to be stable during the displacement.

V. CONCLUSIONS

In this paper, we have derived an extended nonlinear

Schrödinger equation governing the dynamics of modulated

waves in DNA lattice with nonlinear dispersion. We have

shown that this equation allows to successfully describe the

propagation of envelope bright solitary wave with compact

support. Numerical experiments have been carried out in

order to confirm the analytical predictions. Compact initial

data decompose into a train of stable compactons whose

width depends on the number of emitted compactons.

For the physical point of our work, by showing the existence

and the stability of compact bright solitary waves in DNA,

we provide a possible physical mechanism for the effect of

finite enthalpy stacking on DNA dynamics. This model with

on site-dependent finite stacking is used here to show the

existence of compact bright solitary wave in DNA double

strands. We believe that this work shows a new vision on

the concept of compactification of nonlinear waves in DNA

and can also be exported in the study of many other physical

systems. In the actual stage of the research on structures

with compact support, it is true that the obtained results are

still far away from practical applications. However a recent

example gives an argument that a specific TeraHertz radiation

exposure may significantly affect the natural dynamics of

DNA: Alexandrov and al. [15] choose the compact wave to

be an effective perturbation for the creation of a localized

unbinding state at an arbitrary point.

It is necessary to explore the role of the thermal noise in

the process of formation of these localized structures to

study the creation and dynamics of localized structures in

the (JB) model in a cell environment. On the other hand,

such basic complex DNA functional processes as replication

and transcription are controlled by means of the protein

actions [16]. Therefore, to understand the DNA functioning,

taking into account the internal interactions is necessary, but

should be completed by studying the interplay between the

internal motion, e.g., internal oscillations in the DNA, and

the proteins involved in the processes.
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