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Abstract—In prostate brachytherapy procedures, combining
high-resolution endorectal coil (ERC)-MRI with Computed
Tomography (CT) images has shown to improve the diagnostic
specificity for malignant tumors. Despite such advantage, there
exists a major complication in fusion of the two imaging modali-
ties due to the deformation of the prostate shape in ERC-MRI.
Conventionally, nonlinear deformable registration techniques
have been utilized to account for such deformation. In this
work, we present a model-based technique for accounting for
the deformation of the prostate gland in ERC-MR imaging,
in which a unique deformation vector is estimated for every
point within the prostate gland. Modes of deformation for
every point in the prostate are statistically identified using a
set of MR-based training set (with and without ERC-MRI).
Deformation of the prostate from a deformed (ERC-MRI) to
a non-deformed state in a different modality (CT) is then
realized by first calculating partial deformation information for
a limited number of points (such as surface points or anatomical
landmarks) and then utilizing the calculated deformation from
a subset of the points to determine the coefficient values
for the modes of deformations provided by the statistical
deformation model. Using a leave-one-out cross-validation, our
results demonstrated a mean estimation error of 1mm for a
MR-to-MR registration.

I. INTRODUCTION

Prostate cancer is the most common non-skin cancer and

is recognized as the second deadliest cancer in men in the

Western world. Current radiation-based treatment planning

of the prostate cancer is conducted using Computed To-

mography (CT) images of the prostate. CT images provide

high geometric accuracy and electron density information

that is required for accurate dose calculation. In spite of the

aforementioned advantages, the delineation of the prostate

gland in CT images is quite poor due to small differences

in tissue density within and surrounding the prostate gland.

On the other hand, magnetic resonance imaging (MRI) pro-

vides a high-resolution anatomical detailing of the prostate.

Furthermore, the introduction of endorectal coil (ERC) in

MR imaging of the prostate has significantly improved the

spatial resolution and signal-to-noise ratio in prostate MR

images [1]. The enhanced detailing of the prostate gland

provided by ERC-based MRI has proven to provide valuable

information for cancer staging and image-based guidance

during the diagnosis and treatment procedures of the prostate

cancer [2]. Fusion of ERC-MRI with CT images provides a
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Fig. 1. MRI with and without ERC.

better delineation of the prostate during radiation treatment

planning. However, the use of ERC in MR imaging poses a

major challenge in the fusion of the two imaging modalities

by deforming the prostate shape (Figure 1).

It is shown that the deformation of the prostate in ERC-

MRI cannot be accounted for by just simple linear ro-

tation and translation transformations [3], [4]. A number

of researchers have proposed several nonlinear registration

techniques for fusing ERC-MRI with CT images. The use of

intensity-based metrics is not feasible for MR-to-CT image

registration as the contrast variation is limited in CT images

of the prostate. Fei et al. [5], Lian et al. [6], and Venugopal

et al. [7], separately, proposed thin plate spline (TPS) point-

based transformations. The transformation is calculated for

a set of control points that were selected along the contour

of the prostate in corresponding MR and CT images. Others

have proposed the use of finite element method (FEM) for

determining the motion and deformation of the prostate gland

[8], [9]. A major shortcoming of all these frameworks is

that the biomechanical properties of the prostate tissue are

assumed to be the same within the entire prostate gland and

accordingly, the tissue deformation is considered as uniform

across the whole prostate. A quantitative shape and volume

analysis of the prostate using MR images by Hirose et al.

[10] showed that this assumption is incorrect. In a study

using 10 patients, they demonstrated that the peripheral zone

undergos significantly greater deformation than the central

gland during ERC-based MR imaging.

In this work, a novel solution for fusing MR-to-CT images

of the prostate is proposed that accommodates for nonlinear

deformation differences between the two modalities for every

point of the prostate. The proposed technique consists of

a training phase and an estimation phase. In the training

phase, a set of deformed (ERC-MRI) and non-deformed
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Fig. 2. Flowchart of the proposed method. See Section II for details.

(MRI without ERC) prostate image data are used to generate

the deformation model of the prostate. Deformation field

maps are calculated from intensity-based nonlinear regis-

tration of without ERC (w/oERC) to with ERC (wERC)

MRI datasets. Principal component analysis (PCA) is then

utilized on the resulting deformation fields to extract the

statistical mean deformation as well as the most significant

modes of deformation for every point of the prostate. Given

a new registration problem, such as mapping a deformed

prostate image in ERC-MRI to a non-deformed prostate

image in CT for a new subject, first a nonlinear registration is

calculated for a limited number of corresponding landmarks

in both modalities (such as surface contours or anatomical

landmarks). The deformation field values at the known points

are then used to calculate the eigen coefficients correspond-

ing to the deformation modes. Finally, an estimate of the

deformation field for every point constituting the prostate

gland is computed as the summation of the mean deformation

plus a linear combination of the deformation modes with the

calculated eigen coefficients as the weights.

II. MATERIALS AND METHOD

The imaging study was approved by the institutional

review board of the National Cancer Institute of the National

Institutes of Health. Informed written consent was obtained

from volunteer patients. Multi-parametric MR images were

acquired from each patient using a 3.0 T whole body

clinical MR scanner (Achieva, Philips Healthcare, Best,

The Netherlands). T2-weighted MR images covering whole

prostate were collected twice. First, with 6-channel cardiac

coil (SENSE, Philips Healthcare, Best, the Netherlands),

then, with a 16-channel anterior cardiac coil (SENSE, Philips

Healthcare, Best, the Netherlands) and an endorectal coil

(BPX-30, Medrad, Pittsburgh, PA, USA). A brief summary

of the proposed method is depicted in Figure 2.

A. Deformable Registration

Prostate gland was segmented in both wERC and w/oERC

MR images. All w/oERC segmented prostate images were

rigidly aligned to the average of all w/oERC segmented

images. Each individual’s wERC prostate image was then

rigidly aligned with the corresponding w/oERC image. Next,

the w/oERC prostate image was nonlinearly registered to

the corresponding wERC segmented image using a BSpline-

based deformable registration. The registration runs in a

multi-resolution framework, starting with a coarse grid size

followed by a finer grid.

B. Phase I: Statistical Deformation Modeling

The principal component analysis was used to derive the

linear deformation modes from the displacement fields of the

available samples in the following fashion.

Given a subset F in R
3, the calculated displacement fields

(with three x, y, and z components) is shown as:

D<j>
i : F → R

3 (1)

where i = 1, ..., m refers to the indices of the data points,

P , lying within the Mw/oERC mask, and j = 1, ..., n refers

to the dataset index. m, and n refer to the total number of

data points (within Mw/oERC) , and datasets, respectively.

Each deformation field is reformatted to a 1-D vector by

concatenating x, y, and z components from all data points

(D<j>
m×3

⇒ d
<j>
3m×1

). The covariance matrix, Σ, is calculated
as following:

d̃
<i> = d

<i> − d̄ (2)

where d̄ = 1

n

n∑

i=1

d
<i>.

D3m×n = [d̃<1>
d̃

<2> .. d̃
<n>] (3)

Σ = D
T
D (4)

The matrix of deformation eigenvectors, Ψ, which diago-

nalizes the covariance matrix Σ is found as:

Ψ
−1ΣΨ = Λ (5)

where Λ = [λi]n×n is a diagonal matrix with eigenvalues of

Σ, as its diagonal elements. Finally, the eigenvectors of the
displacement field matrix (D3m×n) is found by:

Φ = DΨΛ−
1

2 (6)

Any displacement field can be estimated from the linear

combination of the deformation modes (φi) as following:

d̂
<j> = d̄ +

k∑

i=1

αi
<j>φi, k < n (7)

C. Phase II: Estimation

Let P , and S denote all the data points constituting

the prostate gland and the surface points of the prostate,

respectively. Given the displacement field values at the

surface points, S, the eigen coefficients, αi, i = 1, ..., k,

corresponding to k deformation modes are found by solving

the following matrix of equations:

d
<j>{S} = d̄{S} +

k∑

i=1

αi
<j>φi{S} (8)
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Having found the {αi}, the deformation field value for the
rest of the points within the prostate, P − S, is calculated

from:

d̂
<j>{P − S} = d̄{P − S} +

k∑

i=1

αi
<j>φi{P − S} (9)

III. RESULTS

wERC and w/oERC T2-weighted MRI available from

77 patients were used in this study. Prostate gland was

segmented in MR images using iCAD segmentation tool

(iCAD Inc., Nashua, NH, USA) with manual corrections.

The segmented prostate from w/oERC images were rigidly

aligned to an average template. Segmented prostate images

from wERC data were also rigidly aligned to the w/oERC

prostate image from the same individual. A multi-resolution

BSpline-based deformable registration, implemented in ITK

(Insight Toolkit version 4.0, Kitware Inc.), was used to

register w/oERC to wERC prostate images resulting in a

three-component displacement vector for every voxel. The

registration consists of two resolutions: a coarse grid of

5 × 5 × 5 voxels followed by a finer grid of 20 × 20 × 20
voxels. Mutual information was used as the image similarity

metric. The calculated displacement field was used to warp

the w/oERC image data. The registration resulted in poor

matching for five datasets. These five datasets were excluded

from the rest of the experiment. In order to assess the per-

formance of the registration, the similarity between warped

w/oERC and wERC images within the prostate mask was

measured using normalized cross-correlation (NCC) metric

(mean± std for 72 cases: 96.0 ± 1.0%):

NCC =
E[(Sw/oERC − S̄w/oERC)(SwERC − S̄wERC)]

σ(Sw/oERC)σ(SwERC)
(10)

Next, the calculated displacement fields were reformatted

and used in a principal component analysis to compute the

deformation modes as described in the previous section.

Based on the calculated eigenvalues, at least 29 modes are

required to capture more than 95% of the variability in

the sample. Such high number of modes could be due to

the following reasons: 1) error in the segmentation of the

prostate; and/or 2) error in the nonlinear registration, as for

every 16 voxels a single displacement vector was considered

in the registration.

In order to validate the accuracy of the proposed technique

in estimating the displacement field from partial available

displacement field data (e.g., surface points) and eigen modes

of deformation generated using PCA on displacement fields,

a leave-one-out (LOO) cross-validation scheme was utilized.

Out of 72 datasets, one dataset was excluded at a time and

the rest were passed through PCA to generate the eigen

deformation modes (overall 72 cases). The displacement field

values at surface points from the excluded data together with

the resulting mean displacement field and eigenvectors from

the PCA were plugged in Eq. 7 to estimate the displacement

field at the rest of the voxels. On average, surface points

constitute 4% of the total number of voxels within the
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Fig. 3. Mean±std of the normalized eigen coefficients from 72 cases
calculated in a leave-one-out framework.

prostate mask. Figure 3 demonstrates the mean± std of the

normalized eigen coefficient calculated from the 72 leave-

one-out cases.

For each LOO case, the estimation error was calculated

as the mean square difference between the estimated dis-

placement field and the displacement field resulting from the

nonlinear registration between w/oERC and wERC image

data. Figure 4(a) shows the distribution of the error from

all voxels within the prostate mask, collapsed across all 72

cases. Figure 4(b) demonstrates the localization of the error

across the prostate gland.

In order to evaluate the sensitivity of the proposed tech-

nique to the number of deformation modes considered in

estimation (k in Eq. 7) the LOO was repeated using a range

of values for the number of modes, 10 up to 70 modes with

step size of 10. Figure 5 shows the estimation error collapsed

across all LOO cases for different number of deformation

modes. As can be seen in the figure, the minimum error

occurs when using 40 modes. This may imply that using

higher number of modes may result in overfitting. One-

way ANOVA analysis demonstrated a significant difference

between the distribution of error among different number

of modes. Further post-hoc multiple comparisons revealed

that the error distribution from all 7 modes are significantly

different from one another (F (6, 3 × 107) = 134261, p <

0.0001).

IV. DISCUSSION

A model-based approach for accounting for the defor-

mation of the prostate caused by using an ERC in MR

imaging is proposed. The proposed model-based approach

overcomes the current limitations in fusing ERC-MRI with

other modalities such as CT in brachytherapy procedures

by providing a nonlinear mapping for every point of the

prostate rather than a limited number of landmarks such as

conventional surface-to-surface registration techniques.

A statistical model of the prostate gland deformation is

generated using PCA on displacement fields provided by

nonlinear registration of w/oERC to wERC MR images

for a large sample. Performing a nonlinear intra-modality

registration using an intensity-based metric guarantees an
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Fig. 4. (a) Distribution of error between the estimated and the actual
deformation field combining all 72 cases from the leave-one-out cross-
validation. Mean error is depicted by a red vertical line; (b) Localization of
the distribution of error between the estimated and the actual deformation
field combining all 72 cases from the leave-one-out cross-validation. The
distribution is thresholded at 0.25th and 0.75th quantiles.
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Fig. 5. Error of estimation from the leave-one-out cross-validation for
different number of deformation modes.

accurate match between non-deformed (w/oERC) and de-

formed (wERC) state of the prostate. To be able to utilize

PCA in this framework, a point-to-point correspondence is

required between all datasets within the training sample. In

this study, a rough correspondence between training data

(w/oERCMRI) required for the principal component analysis

is achieved by a rigid alignment. The PCA performance in

this study is affected by: 1) way of realizing correspondence

among sample points (rigid registration); 2) the prostate

segmentation accuracy; and 3) nonlinear registration between

w/oERC and wERC image data. A few alternative techniques

are currently being investigated to improve the data corre-

spondence, the segmentation and registration accuracies.

As demonstrated in Figure 5, the estimation error signifi-

cantly changes with the number of deformation modes. The

increase in the estimation error seen by using more than 40

modes could also be explained by the prostate segmentation

and registration error, which causes overfitting of the model.

In order to use the proposed framework for a nonlinear

registration between ERC-MRI and any other modality such

as CT images, a set of landmarks that are identifiable

in both modalities are extracted and nonlinearly registered

(using a point-based registration technique). Such set of

landmarks could be a few control points on the contour of

the prostate, anatomical landmarks that are visible in both

modalities or artificial fiducials such as radioactive seeds. A

deformation field that matches the prostate at every point in

both modalities is then realized by inserting the calculated

deformation values at the selected landmarks into the PCA

deformation model of the prostate and solving for the eigen

coefficients of the deformation modes.
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