
A Graph-Based Approach to the Retrieval of
Volumetric PET-CT Lung Images

Ashnil Kumar, Student Member, IEEE, Jinman Kim, Member, IEEE, Lingfeng Wen, Member, IEEE,
and Dagan Feng, Fellow, IEEE

Abstract—Combined positron emission tomography and com-
puted tomography (PET-CT) scans have become a critical tool
for the diagnosis, localisation, and staging of most cancers. This
has led to a rapid expansion in the volume of PET-CT data that is
archived in clinical environments. The ability to search these vast
imaging collections has potential clinical applications in evidence-
based diagnosis, physician training, and biomedical research
that may lead to the discovery of new knowledge. Content-
based image retrieval (CBIR) is an image search technique
that complements conventional text-based retrieval by the use of
image features as search criteria. Graph-based CBIR approaches
have been found to be exemplary methods for medical CBIR as
they provide the ability to consider disease localisation during the
similarity measurement. However, the majority of graph-based
CBIR studies have been based on 2D key slice approaches and did
not exploit the rich volumetric data that is inherent to modern
medical images, such as multi-modal PET-CT. In this paper, we
present a graph-based CBIR method that exploits 3D spatial
features extracted from volumetric regions of interest (ROIs). We
index these features as attributes of a graph representation and
use a graph-edit distance to measure the similarity of PET-CT
images based on the spatial arrangement of tumours and organs
in a 3D space. Our study aims to explore the capability of these
graphs in 3D PET-CT CBIR. We show that our method achieves
promising precision when retrieving clinical PET-CT images of
patients with lung tumours.

I. INTRODUCTION

Medical imaging plays a fundamental role in modern health-

care. This has led to a rapid expansion in the volume of

medical images stored in databases and picture archiving

and communication systems (PACS). In addition to retaining

a record of patients’ imaging results, these massive image

collections also offer the opportunity for other applications

such as evidence-based diagnosis, physician training and

biomedical research [1], [2], [3]. However, these applications

all rely upon the extraction and recognition of relevant image

features.

Content-based image retrieval (CBIR) is an image search

technique that complements the conventional text-based re-

trieval of images by using visual features as search criteria

[4]. These features typically include shape, colour, texture and

the spatial arrangement of objects within an image. In recent
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years, CBIR research has evolved from retrieving images of

one modality to multi-modality images, providing the ability

to form search queries using complementary image data.

Multi-modality images, such as combined positron emission

tomography and computed tomography (PET-CT), have be-

come highly utilised in clinical environments due to their

ability to present complementary data that improves clinical

tasks. For example, PET-CT allows improved cancer diagnosis,

localisation, and staging compared to single-modality PET or

CT [5].

In previous work we presented the development of PET-

CT CBIR using overlapping features [6]. We have also used

feature vectors containing information extracted from both

modalities: texture from CT, and the standard uptake value

(SUV) of the PET radiotracer 18F-Fluorodeoxyglucose (FDG)

[7], [8]. However, this approach did not consider the relation-

ships between functional and anatomical structures, which are

powerful features for discriminating images.

We also proposed a graph-based approach that retained

the relationship features between PET and CT regions [9].

Our method extended the single-modality graph-based CBIR

method proposed by Petrakis et al [10], [11] in which regions

of interest (ROIs) were represented as attributed graph vertices

while attributed graph edges represented relationships between

pairs of ROIs. Our choice of a graph-based approach was

inspired by the fact that graphs are a powerful tool in pat-

tern recognition applications, including image matching [12].

Furthermore, graphs have also been shown to have the highest

retrieval accuracy when searching for images based upon the

similarity of the spatial arrangement of their ROIs [10].

The staging system for lung cancer [13] is an inherently

three-dimensional scheme as it classifies the disease according

to the proximity, size, and relationships between tumours

to surrounding anatomical structures. However, our previous

work [9] investigated PET-CT CBIR retrieval with a 2D key

slice based approach, where a single slice was chosen to

represent the entire PET-CT volume. This approach did not

take advantage of the full benefits of 3D features provided

by the volumetric images. As tumours can occur in multiple

locations it is unlikely that a single transaxial slice contained

all the information necessary to completely represent the

current condition of a patient.

In this paper, we investigate how indexing 3D spatial

features introduces new capabilities by enabling the retrieval

of PET-CT images based on the similarity of 3D tumour

localisation. We propose a graph-based approach that indexes
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3D features extracted from volumetric ROI in both PET and

CT images. Our similarity measurement algorithm uses a

graph-edit distance calculation to retrieve images based on the

spatial arrangement of tumours and organs in a 3D volume.

We demonstrate the capabilities of our 3D graph-based CBIR

framework in the retrieval of clinical PET-CT lung tumour

studies.

II. METHOD

A. Data Set

We obtained 50 PET-CT studies of patients with lung

tumours. The images were all acquired on a Siemens Biograph

mCT scanner with a CT resolution of 512 x 512 pixels at

0.98mm x 0.98mm, a PET resolution of 200 x 200 pixels at

4.07mm x 4.07mm, and a slice thickness of 3mm. We also

obtained the clinical reports for each study, containing a de-

scription and locations of the tumours and nodal involvement

in each case. Each study contained an average of 2.1 tumours

(minimum 1, maximum 7).

We used a well-established adaptive thresholding algorithm

[14] with refinements to segment the lung ROI from the CT.

We applied connected thresholding to coarsely segment the

brain and mediastinal tissue (including the heart). Tumours

from the PET images were segmented with a 40% peak SUV

(SUV40) connected thresholding to detect hot spots indicated

in the diagnosed reports [15]. We used the clinical reports to

manually make minor corrections to the segmented ROI to

ensure that the segments were well-defined.

We created a reference index of image similarity that

specified for every PET-CT image in the data set the list of

images that were similar to it. The reference index was created

on the basis of the tumour locations (e.g. a particular lung lobe)

specified within the clinical reports.

B. Graph Representation

We defined our multi-modality graph as follows: GC =
(VC , VP , E, I), where VC is the set of vertices representing

CT ROI, VP is the set of vertices representing PET ROI, E =
{vivj} ∀ vi, vj ∈ VC ∪ VP where vi �= vj is the set of all

edges, and I is the multi-modality image represented by GC .

By definition, all graph vertices were pairwise connected by

an edge.

Every vertex vi ∈ VC ∪ VP was defined to be a group of

features: vi = (c, v, s, l). The vertex features were:

1) centroid (c) - the 3D centre of mass of the ROI. This

feature was used for the calculation of other features and

not for similarity measurement.

2) volume (v) - the number of voxels (individual 3D picture

elements) within the ROI multiplied by the voxel size

(mm3).

3) surface area (s) - the number of pixels on the boundary

of the ROI multiplied by the appropriate pixel size

(mm2).

4) length (l) - the maximum distance between two voxels

on the boundary of the ROI (mm).

Every edge e ∈ E was also defined to be a group of features:

e = (ev, d, ro, rv,md). The edge features were:

1) endvertices (ev) - the pair of vertices vi, vj with vi �= vj
connected by this edge. This feature was used to calcu-

late other features.

2) distance (d) - the distance between the centroids of the

ROIs represented by the endvertices (mm).

3) relative orientation (ro) - the pitch and yaw angles

between the centroids of the two ROI.

4) relative volume (rv) - the ratio of the volumes of the

two ROI.

5) minimum distance (md) - the minimum distance be-

tween any two voxels within either ROI (mm).

We ensured that features that had high numerical values

did not contribute more to the eventual similarity calculation

by normalising features to the range [0, 1]. This was done by

linearly scaling non-angle features to a random variable with

zero mean and unit variance, and then shifting the value so

that it was within the desired range [16]. The ro feature was

normalised to the same range by taking the sine and cosine of

the angles as suggested in [10].

Fig. 1 shows an example of an image and its corresponding

graph representation. The CT image in Fig. 1(a) contains 3

ROI: the left lung, the right lung, and the mediastinal tissue.

The corresponding PET image in Fig. 1(b) contains 4 tumour

ROIs. Fig. 1(c) is the graph constructed from these seven ROI.

While the figure depicts only a single 2D slice, our graph

construction creates a single vertex for every 3D ROI.

C. Similarity Measurement

Our similarity measurement was based upon the concept of

graph-edit distance, which can simply be explained as the cost

to transform one graph into another. The brute force technique

we used previously [9] had an exponential computational

complexity and was not feasible for the large graphs that

were used in this study. We therefore adapted the beam-search

A* algorithm [17], which calculates graph edit distances by

applying a beam to the popular A* algorithm [18]. This

improved the speed of the graph edit distance calculation

by limiting the number of combinations of vertex-to-vertex

mappings that are compared.

(b)

(c)

c: …
v: …
s: …
l: …

ev: …
 d: …
ro: …
rv: …
md: …

Left
Lung

Right
Lung

Tissue

Lesion

Lesion

Lesion

Lesion

(a)

Fig. 1. Constructing a graph representation from a PET-CT image. (a) The
CT image with 3 ROI. (b) The PET image with 4 ROI (tumours). (c) The
graph representation.
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We used our separation of the vertices into two sets (VC

and VP ) to ensure that CT vertices would be mapped only

to other CT vertices, and PET vertices to other PET vertices.

This meant that a PET vertex would never be mapped to a

CT vertex when following the beam-search A* algorithm as

described in [17]. The cost to match a vertex of edge of a

query graph to an appropriate element of a graph representing

an image in the data set was given by the Euclidean distance:

d (Q,S) =

√∑
i

(qi − si)
2

(1)

where Q is a vertex from the query graph, S is a vertex from

a graph in the data set, and qi and si are the i-th features of

Q and S, respectively.

Extra vertices and edges on either the query or retrieved

graph were accounted for with the following insertion and

deletion cost, as obtained from [11]:

del ins (R) =

√∑
i

r2i (2)

where R is a vertex or edge being deleted or inserted and ri is

the the i-th features of R. Vertex deletion has a cascading ef-

fect because it also removes incident edges, thereby increasing

the edit distance.

D. Experimental Procedure

We carried leave-one-out experiments using the entire data

set and calculated the precision and recall of every retrieval. In

addition, we also devised two specific retrieval experiments to

demonstrate the ability of our CBIR method to find images

with tumours with specific 3D localisations. The first was

aimed at finding images with a single tumour within the upper

lobe of the right lung, while the second attempted to find

images with two tumours in different locations: the lower lobe

of the left lung and the mediastinum.

Precision and recall are defined as:

precision =
tp

tp+ fp
(3)

and

recall =
tp

tp+ fn
(4)

where tp is a true positive (or similar) retrieved image, fp is a

false positive (or dissimilar) retrieved result, and fn is a false

negative or a similar image that was not retrieved.

III. RESULTS AND DISCUSSION

We calculated the mean precision and recall across all the

leave-one-out retrievals. Fig. 2 is an 11-point precision-recall

plot of the averaged data. On average, our method was able

to achieve ≥ 40% precision at all levels of recall. In retrieval

literature [19], the most similar images are expected within the

first few retrieved images i.e. at low recall values (usually 4 or

5 images). The user then selects the correct images from the

retrieved subset. Fig. 2 shows that our method is capable of

achieving a mean precision of between 60-70% at low levels
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Fig. 2. Mean precision and recall when retrieving volumetric PET-CT images.

of recall (about ≤ 20%). In our experiments, this result means

that on average more than half of the first 4 retrieved images

are relevant to the query, which is in-line with other retrieval

approaches [20].

Fig. 3 depicts the results of the experiments aimed at finding

images that contain tumours with specific 3D localisations. For

the purpose of clarity, the figure only shows coronal maximum

intensity projects (MIPs) of the PET images of every case.

The tumours within the images have been marked in red. The

number beneath a retrieved image is the cost to transform the

graph representing that image to the graph of the query image.

Note that due to the nature of PET-CT acquisition, the left side

of the body is depicted on the right side of these images.

The query in the first column contains a single tumour

within the upper lobe of the right lung. It is easy to visually

verify that each of the three retrieved images also has a single

tumour within the upper lobe of the right lung. The tumour

within the second retrieved image, however, extends into the

mediastinum, and is much larger than the tumour within the

third retrieved image. While all three retrieved images are

similar, ideally the third image should have been ranked higher

than the second image. The results obtained are expected

as our method currently has graphs with the same structure,

and does not weight any features or relationships. Weighting

volume could have resulted in the ideal retrieval.

The query in the second column contains two tumours,

one within the lower lobe of the left lung and the other

within the mediastinum. The first retrieved image matches

these localisations exactly. The second retrieved image has

much smaller tumours; according to the clinical reports, one

of the tumours is within the left lower lobe while the other is

near the left hilum. The tumours in the third image are in the

left upper lobe and the left hilum.

These results demonstrate that our 3D graph-based CBIR

method is able to find similar 3D PET-CT data from the data

set. In addition, the results have also identified ways in which

our scheme could be improved. Firstly, every graph could

index modality-specific features, such as SUV for PET and
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Query

Rank 1

2.4324

Rank 2

2.4759

Rank 3

2.4871

4.1470

4.2527

4.2700

Fig. 3. Example retrievals using our proposed method. Tumours in the PET
MIPs have been marked in red. The retrieved images are ranked in order from
most similar (1) to less similar (3). The number below a retrieved image is
the graph-edit distance (dissimilarity measure).

texture for CT, thereby enabling similarity measurement based

on complementary features extracted from each modality.

In addition, the results in Fig. 3 suggest that there are

elements of our graph that have a negative influence on the

similarity measure. Currently, images with the same number of

ROIs have graphs with same structure; all vertices are pairwise

connected. This caused the result in the first column of Fig. 3

where the third retrieved image is more similar to the query

than the second. In this example, removing edges between

unrelated vertices would cause the second retrieved image

to have a different structure (the tumour vertex would have

edges with the left lung and the mediastinal tissue vertices)

compared to the query and other retrieved graphs (the tumour

vertex would have only one edge with the left lung vertex).

A higher graph edit distance would then be calculated due to

edge deletion operations. The final outcome would be that the

image would be ranked lower than the third retrieved image

(the ideal case, as described earlier).

IV. CONCLUSION AND FUTURE WORK

In this study, we presented a graph-based CBIR algo-

rithm that enabled the retrieval of volumetric PET-CT images

through the analysis of volumetric ROI and the extraction of

3D spatial features. We demonstrated that our method was able

to achieve high levels of retrieval precision on a data set of

50 clinical PET-CT images. In the future we will investigate

the inclusion of additional graph features that are specific to

a particular modality, such as texture for CT and SUV for

PET. Furthermore, our graph currently contains edges that may

represent redundant information; we will consider the removal

of these edges by pruning the graphs.
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