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Abstract— We present a novel approach to the segmentation
of psoriasis lesions in “full body” digital photographs potentially
involving dozens or even hundreds of separate lesions. Our
algorithm first isolates a set of zones that certainly correspond
to lesional plaques based on chromatic information, and then
expands these zones to achieve an accurate segmentation of
plaques through a Geometric Active Contours method. The
variability in segmentation between our algorithm and different
human operators appears comparable to the variability between
human operators.

I. INTRODUCTION

Psoriasis is a chronic, inflammatory multisystem disease
that usually appears on the skin. Psoriasis affects 1 − 3%
of the world’s population [5]; while currently no cure is
known, various treatments can help control symptoms. The
most common clinical variant (80 − 90% of all cases) is
psoriasis vulgaris, characterized by circular-to-oval red skin
plaques often with silvery white scales; the extent of affected
skin can range from minor localized patches to full body
coverage [18].

One of the most important parameters for evaluating the
seriousness of a psoriasis case is the percentage of the
cutaneous surface affected. Lesion area is the highest weight
parameter in the Psoriasis Area and Severity Index (PASI –
the current “gold standard” in psoriasis scoring) [3] as well
as in most alternative, simplified indices [15].

Manually evaluating lesion area by hand is prohibitively
time consuming; furthermore, it is often prone to significant
margins of error [14]. Automated evaluation of psoriasis
lesion area, performed by a computer operating on digital
photographs of the patient, promises instead non-invasive,
fast, accurate and highly reproducible assessments of lesion
area with minimal intervention by the dermatologist [13].
The crucial step in evaluating lesion area is segmentation, i.e.
classification of all points in the image as part of the lesion
or simply part of the surrounding, healthy skin. Most work in
the literature focuses on “single lesion” segmentation. This
work introduces a robust approach to the segmentation of
psoriasis lesions in “full body” digital photographs poten-
tially involving dozens or even hundreds of separate lesions.

The rest of this work is organized as follows. Section II
reviews the most significant approaches to psoriasis segmen-
tation in the literature. Section III describes our approach in
detail. Section IV provides an experimental evaluation of our
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techniques over a set of “full body” images from 20 different
patients. Section V summarizes our results and discusses
their significance before concluding with the Bibliography.

II. RELATED WORK

Several different approaches to psoriasis segmentation
have been proposed, each with specific strengths and weak-
nesses. Most reported research focuses on psoriasis vulgaris,
due to its vast prevalence over all other forms.

The greyscale thresholding method applied in [16] is
simple and efficient, but suffers from extreme sensitivity to
illumination variations. [4] [19] [1] rely on Artificial Neural
Network (ANN) classification; the ANN paradigm makes it
difficult to incorporate expert insight and feedback and, more
importantly, is computationally intensive (requiring a training
phase per patient). [9] adapts to psoriasis segmentation the
powerful approach of k−means clustering, requiring rigorous
parameter tuning; the same requirement holds for [20],
which is based on Multiple Spectral-Spatial Classification.
The approach of [6] uses colour distance metrics to classify
pixels; when applied to “full body” photographs, this method
is not robust with respect to variability in skin texture, colour
and illumination.

In most work, segmentation methods are evaluated on sets
of less than half a dozen images; each image usually involves
only a single lesion. Performance assessment is in terms of
misclassified pixels compared to a “ground truth” manually
provided by a human operator.

III. A ROBUST SEGMENTATION ALGORITHM

Our algorithm pursues two main goals. First, it aims at
segmenting large regions of the body, possibly including
dozens or even hundreds of different lesions. Second, it
aims at segmenting robustly different patients, tolerating
variability in skin pigmentation and lesion appearance.

As a preliminary step, we evaluate strengths and weak-
nesses in pursuing these two goals of chromatic-based
approaches commonly used in single lesion segmentation
(Subsection III-A). A straightforward use of these techniques
turns out to be ineffective. Thus, we break the whole seg-
mentation process into two simpler phases, mimicking the
approach of a human operator. The first phase analyses the
whole image and isolates those areas that certainly corre-
spond to psoriasis plaques (Subsection III-B). The second
phase individually analyses areas isolated during the first
phase and accurately determines lesion borders through a
Geometric Active Contours methodology (Subsection III-C).
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A. Psoriasis segmentation in colour space

Human operators detect a lesion by its contrast with
surrounding skin (e.g. considering differences in skin colour
or texture). Accordingly, pixels should be classified as
healthy or lesional on the basis of a specific distance over
a discriminating feature space. Most work in the literature
focuses on colour features; in order to detect a set of dis-
criminating ones, we performed a preliminary experimental
study applying Principal Component Analysis (PCA) [8] to
a dataset of images projected on four different colour spaces.

Our dataset consisted of 20 digital photographs, each
of a different patient affected by psoriasis vulgaris. All
patients were caucasian. A sizable fraction of all lesions
was scaly. Among these 20 photographs, 8 were of legs,
7 of back torsos and arms, and 5 of front torsos and arms.
In 8 photographs the patient appeared partially clothed. In
some photographs over 95% of the visible skin was healthy,
in some more than 50% was lesional. Every photograph
involved multiple distinct lesions, in some cases more than
50. Each photograph was independently segmented by two
human operators, using a graphic tablet.

We projected each photograph onto four different colour
spaces[10] (RGB, Lab, HSV and YUV). Then, we applied
PCA to the resulting representations and observed the fol-
lowing:
• When only a small portion of the skin is lesional,

projecting the image onto the main one or two Principal
Components “erases” psoriasis pixels (i.e. they are con-
fused with noise); this makes standard PCA unsuitable
for classification.

• In all cases, one of the Principal Components (but not
always the first or even the second one) discriminates
between healthy and lesional skin.

• The discriminating Principal Component seems well
aligned with the chrominance component V from YUV
colour space and the H component from HSV colour
space.

V can be seen as the red purity of a colour. Defined as:

V (R,G,B) =
1

2
+
R

2
− G+B

4
(1)

V ranges from 1 (for a deep red) to 0 (for its opposite, a
strong cyan).
H corresponds to the hue – in some sense the dominant

wavelength – of a colour. More precisely, consider a point
〈R,G,B〉 in the RGB colour space (with 0 ≤ R,G,B ≤
1), and let M = max(R,G,B) and m = min(R,G,B).
H(〈R,G,B〉), measured on the [0, 1) interval, is defined as:

H(〈R,G,B〉) =


G−B

6(M−m) mod 1 if R ≥ G,B
B−R

6(M−m) + 1
3 if G ≥ B,R

R−G
6(M−m) + 2

3 if B ≥ R,G
undefined if M = m

(2)

Informally, we can think hue as representing colour on a
circumference mapped on the interval [0, 1), where greens
are close to 1/3, blues to 2/3, and reds close to 0 and 1;

by convention, H(x) = 0 if M = m. For simplicity, we
introduce a shifted hue H ′(x) = ((H(x) + 0.06) mod 1)
that essentially maps close to 0 all predominantly red pixels,
leaving purplish/pink ones close to 1.

The naive projection of patient images on the 2-D space
induced by H ′ and V does not allow accurate classification
of pixels (see Figure 1).

Fig. 1: Projection of a patient photograph on the 2-D space
induced by H ′ (shifted hue) and V (chrominance); healthy
pixels (blue squares) are not separable from psoriasis pixels
(red crosses).

Separation is hard for two main reasons. First, “full
body” images may present distortion and high variability
in skin texture, colour and illumination. Second, psoriasis
lesions in different body regions of the same patient may be
highly inhomogeneous. Approaches involving thresholding
on bimodal colour histograms of skin surface, commonly
used for single lesion analysis, cannot provide accurate and
robust segmentation in the case of “full body” images.

B. Chromatic partitioning

While straightforward segmentation of multiple psoriasis
lesions in colour space leads to inaccurate results, one can
employ chromatic features to solve a related problem: the
detection of at least one pixel per plaque. This pixel then
becomes an indicator for the plaque itself.

The first phase of our algorithm analyses “full body”
images, isolates patient skin from the background and ob-
tains a set of indicator pixels in the H ′-V space. The
neighbourhood of each indicator is then expanded through a
Geometric Active Contours method during the second phase
to accurately determine lesion borders.

Isolation of the skin (healthy or lesional) from the back-
ground is an easy task if the digital photograph is taken under
appropriate conditions – for example, against a uniform green
or blue background. However, in many cases, one has to
work with photographs taken in less than ideal conditions,
including patients who are partially dressed. We have found
that preprocessing based on Region Of Interest (ROI) seg-
mentation similar to that described in [12] is extremely robust
and allows isolation of portions of skin with great accuracy.
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We then analyse the skin area to extract a set of indicator
pixels. For any pixel x, we denote by 〈H ′(x), V (x)〉 its
colour components in the H ′-V colour space. Given an
image, a subset S of its pixels is a complete set of indicators
if at least 90% of the pixels in S are psoriasis pixels and
the plaques containing at least one indicator cover more
than 90% of the lesional skin. An image contains an easily
separable complete set if there exist two thresholds th′ and
tv such that the set

S = {x : H ′(x) ≤ th′ , V (x) ≥ tv} (3)

is a complete set. Analysing our dataset, we were able to
extract an easily separable complete set in 85% of the images
(see Figure 2).

Fig. 2: Identification of a set of indicator pixels (marked in
white).

Interestingly, the thresholds varied very little between
images. Their average values were t̄h′ = 0.61 and t̄v = 0.93
(with a standard deviation less than 0.05 for both values).
The variety of our dataset suggests these values can be
effective in tackling the indicator problem on a wide range
of images. While image specific thresholding could lead to
more accurate results, Section IV experimentally shows that
t̄h′ and t̄v can guarantee good performance with low com-
putational requirements (since one can avoid recomputing
different thresholds for each image).

C. Geometric Active Contours

During the second phase, we accurately segment psoriasis
lesions in (shifted) hue space through a Geometric Active
Contours (GAC) algorithm [11] [17].

Any indicator pixel identified during the first phase can be
fed to our GAC algorithm as a “seed” that one can “inflate”
to obtain the contour of a lesion. Given an arbitrary indicator
pixel, we set as initial contour the edges of a 3 × 3 pixel
square centred on the indicator itself. We iteratively evolve
this initial contour to maximize a well-determined image-
based energy functional (see Figure 3). We found particularly
effective the energy functional described in [17].

Formally, a contour C is the set of zeros of a signed
distance function φ : R2 → R. φ is negative inside the

Fig. 3: Progressive adjustment of single lesion segmentation
in the GAC framework.

lesion, and positive outside. By modelling the hue of each
pixel as a random variable z, we evaluate the probability
density functions (pdf) pin(z, φ) and pout(z, φ) for the pixels
inside and outside C. The distance between pixels inside and
outside C is the standard deviation of the difference between
the logarithms of pin(z, φ) and pout(z, φ). We maximize this
distance by maximizing the energy functional:

E(z, φ) =

√√√√E [(log
pin(z, φ)

pout(z, φ)

)2
]
− E

[(
log

pin(z, φ)

pout(z, φ)

)]2
(4)

where E [f(z)] denotes the expected value of f(z). φ (and
thus C) evolves according to the equation:

δφ

δt
= 5φE(z, φ) (5)

Evolution stops when convergence has been achieved or after
a maximum number of iterations.

As mentioned above, the second phase uses indicator
pixels as “seeds” for GAC iterations. The “full body” image
is projected on the hue space and partitioned into a set
of windows of fixed size; windows are small enough to
contain, on average, no more than half a dozen plaques.
Each window is then analysed iteratively, separately from
the others. For each window, we consider the indicator pixel
of maximum hue and expand its contour through our GAC
algorithm, until the plaque borders are accurately matched.
The same procedure is applied again to the indicator pixel
of maximum hue among those not marked as lesional in the
previous step. The process is iterated until all the indicators
in the window have been marked as part of a lesion by at
least one GAC expansion. If a GAC expansion produces
a border intersecting a window margin, then the pixels on
the boundary are marked as indicators for the neighbouring
window. The phase ends when every indicator has been
analysed. If a “seed” for GAC iterations corresponds to a
pixel incorrectly marked as lesional in the first phase, then
pin(z, φ) and pout(z, φ) are highly similar and the initial
contour does not evolve.

Figure 4 compares the segmentation produced by our
algorithm with that produced by a human operator.

IV. EXPERIMENTAL EVALUATION

We evaluated our algorithm on the dataset of 20 digital
images described in Subsection III-A. During the first phase,
we marked as indicators all pixels with shifted hue at most
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Fig. 4: Segmentation of psoriasis plaques by our algorithm
(left) and by a human operator (right).

t̄h′ and red purity at least t̄v . During the second phase, each
GAC execution was run for at most 400 iterations. For each
photograph and each operator, we measured the area of the
misclassified region – i.e. the number of pixels classified as
lesion by the algorithm or by the operator but not by both.
This quantity was then, in each photograph, compared to the
total lesion area according to the operator.

The area of the misclassified region was 14% of the lesion
area according to the first human operator. It was 16% of
the lesion area according to the second operator. Misclas-
sification was due mostly to false negatives (i.e. psoriasis
pixels classified as healthy by our algorithm): scaly lesions
containing no dull-red zones were not detected in the first
phase. We observed no correlation between misclassification
rate and percentage of lesional skin.

In evaluating these results, three things should be kept
in mind. First, the photographs were taken in realistic
field conditions, with suboptimal illumination, posture etc.
Second, and in contrast with most of the literature, our
photographs involved a large number of distinct lesions,
often at a rather sharp angle with the camera. Third, and
perhaps most importantly, it seems fundamentally impossible
to achieve considerably better results: we compared the
segmentations of the two human operators (as in [2]) and
found that the area of the region “misclassified” by the
first operator was 9% of the lesion area according to the
second. In other words, the machine-operator variability in
assessing the exact lesion borders appears comparable to the
variability between different human operators.

V. CONCLUSIONS

Our algorithm combines two steps to accurately detect
the borders of psoriasis plaques in “full body” digital pho-
tographs involving up to several dozen lesions. The variabil-
ity in segmentation between our algorithm and different hu-
man operators appears comparable to the variability between
human operators. Although this does not rule out that other
algorithms could outperform ours, any such performance
increase would require a methodology different from the
“standard” comparison to a human operator to be quantified.

This work is only the first step toward a semi-automated
evaluation of the percentage of cutaneous surface affected by

psoriasis – and of other characteristics of psoriasis such as
erythema or desquamation. To compute the area affected, at
the very minimum it should be combined with a model of
the 3D curvature of the body. It should also be extended to
deal with different skin colours and rarer types of psoriasis
(e.g. guttate, inverse, pustular and erythrodermic psoriasis),
possibly considering texture features in addition to colour
ones. Finally, it would be extremely important to evaluate
the variability of the algorithm in assessing the same set of
lesions under slightly different postures, zooms and illumi-
nation conditions.

REFERENCES

[1] N.K.A. Abbadi, N.S. Dahir, M.A.A. Dhalimi, and H. Restom. Psoriasis
detection using skin color and texture features. Journal of Computer
Science, 6(6):648–652, 2010.

[2] A. Belloni Fortina, E. Peserico, A. Silletti, and E. Zattra. Where’s the
naevus? Inter-operator variability in the localization of melanocytic
lesion border. Skin Research and Technology, 2011.

[3] T. Fredriksson and U. Pettersson. Severe psoriasis–oral therapy with
a new retinoid. Dermatologica, 157(4):238–244, 1978.

[4] H. Hashim, R. Jarmin, and R. Jailani. Plaque psoriasis diagnosis model
with dominant pixel gradation from primary color space. In Proc.
Asian Conference on Sensors and the International Conference on
new Techniques in Pharmaceutical and Biomedical Research 2005,
pages 81–86.

[5] C. Huerta, E. Rivero, and L.A.G. Rodriguez. Incidence and risk factors
for psoriasis in the general population. Archives of Dermatology,
143(12):1559, 2007.

[6] D. Ihtatho, M.H. Ahmad Fadzil, A. Mohd Affandi, and S.H. Hussein.
Automatic PASI area scoring. In Proc. ICIAS 2007, pages 819–822.

[7] R. Jailani, M.N. Taib, and S. Sulaiman. Color space for psoriasis skin
diseases analysis. In Proc. AsiaSense 2003, pages 263–268.

[8] I.T. Jolliffe. Principal Component Analysis. Springer Series in
Statistics, 2002.

[9] L.H. Juang and M.N. Wu. Psoriasis image identification using k-means
clustering with morphological processing. Measurement, 44(5):895 –
905, 2011.

[10] P. Kakumanu, S. Makrogiannis, and N. Bourbakis. A survey of
skin-color modeling and detection methods. Pattern Recognition,
40(3):1106–1122, 2007.

[11] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour
models. International Journal of Computer Vision, 1(4):321–331,
1988.

[12] J. Kovac, P. Peer, and F. Solina. Human skin color clustering for face
detection. In Proc. EUROCON 2003, volume 2, pages 144–148.

[13] S. Kreft, M. Kreft, A. Resman, P. Marko, and K.Z. Kreft. Computer-
aided measurement of psoriatic lesion area in a multicenter clinical
trial–comparison to physician’s estimations. Journal of Dermatologi-
cal Science, 44(1):21–27, 2006.

[14] R.G. Langley and C.N. Ellis. Evaluating psoriasis with psoriasis area
and severity index, psoriasis global assessment, and lattice system
physician’s global assessment. Journal of the American Academy of
Dermatology, 51(4):563–569, 2004.

[15] B.A. Louden, D.J. Pearce, W. Lang, S.R. Feldman, et al. A Simplified
Psoriasis Area Severity Index (SPASI) for rating psoriasis severity in
clinic patients. Dermatology Online Journal, 10(7), 2004.
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