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Abstract—Positron emission tomography - computed 

tomography (PET-CT) plays an essential role in early tumor 
detection, diagnosis, staging and treatment. Automated and 
more accurate lung tumor detection and delineation from 
PET-CT is challenging. In this paper, on the basis of 
quantitative analysis of contrast feature of PET volume in SUV 
(standardized uptake value), our method firstly automatically 
localized the lung tumor. Then based on analysing the 
surrounding CT features of the initial tumor definition, our 
decision strategy determines the tumor segmentation from CT 
or from PET. The algorithm has been validated on 20 PET-CT 
studies involving non-small cell lung cancer (NSCLC). 
Experimental results demonstrated that our method was able to 
segment the tumor when adjacent to mediastinum or chest wall, 
and the algorithm outperformed the other five lung 
segmentation methods in terms of overlapping measure.  

I. INTRODUCTION 

UNG cancer is one of the major causes of death from 

cancers [1]. Early diagnosis and staging of lung cancer is 

important to significantly increase the survival rate of 

lung cancer. Accurate lung tumor segmentation is of 

preliminary importance to lung cancer radiotherapy for 

avoiding damage to its neighbouring healthy organs or tissues. 

The hybrid PET-CT scanners, providing the complementary 

biological information at molecular level and anatomical 

structures from a same imaging session, have been widely 

utilized for lung cancer diagnosis and treatment.  

In 18F-fluoro-deoxy-glucose (FDG) PET images, lung 
tumors can be distinguished as “hot spots” due to their high 
intensities representing the voxel activities. The standardized 
uptake value (SUV) provides a semi-quantitative 
measurement to normalize PET intensities across different 
acquisition times and varying patients. Therefore, PET is 
considered more effective than CT in terms of automated 
tumor detection. However, the automated localization of lung 
tumor based on SUV is challenging, mainly because normal 
organs such as liver and heart also exhibit an increased FDG 
uptake. Therefore, seed points or the bounding boxes are 
manually selected for the computerized lung tumor 
delineation from PET [2-4]. Another major obstacle to 
automated tumor delineation from PET is posed by the low 
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spatial resolution and relatively low signal noise ratio (SNR) 
of PET.  

Due to the better tumor boundary definition provided by 
anatomic CT, in clinical practices, manual delineation of 
tumor largely depends on CT image [5]. However, the low 
contrast between the soft tissues in CT raises a challenge for 
automatically separating the tumor from its neighbouring 
healthy tissues [6]. Based on image registration, better use of 
PET and CT information for tumor segmentation [7, 8]has 
been investigated. However, segmentation of the tumor when 
it extends or attaches to mediastinum or chest wall remains a 
challenge.  

In our previous work [4], the tumor-customized downhill 
(TCD) method solved the tumor leakage into adjacent healthy 
tissues, and could delineate the whole tumor volume even 
when the tumor was heterogeneous. The SUV value and 
gradient were both considered for the stopping criterion. 
Several studies [6, 9-12] had investigated other features 
beyond gradient or SUV values in medical image analysis. 
For instance, in [6], Yu et al  analyzed 14 PET and 15 CT 
textural features under the assumption that tumor and normal 
tissues may have different textures or patterns, and then 
developed a co-registered multimodality pattern analysis 
segmentation system in [9]. The texture features were used 
for merging after the watershed segmentation in [10].  

In this paper, we presented an automated tumor 
localization and segmentation approach. Contrast feature was 
investigated and showed capability in the capture and 
localization of the tumor. Besides the decision strategy 
automatically classified the cases into two categories, and 
then the segmentation on PET or CT was accomplished 
correspondingly.  

II. METHOD 

A. Tumor Localization via Contrast Feature from PET 

volume in SUV 

Because the neighbourhood grey-tone difference matrix 
(NGTDM) [13] takes spatial relationship and probabilities of 
intensities into consideration, it reveals more information 
than first order features like mean, standard deviation and 
gradient. Among all the features based on NGTDM, contrast 
is a reflection of the intensity difference between 
neighbouring regions. In addition, the spatial frequency of the 
changes in intensity can be reflected by contrast. Therefore, in 
our method, the contrast feature is calculated from PET SUV 
volume.  

The calculation of contrast [13] in PET volume is on a 
voxel-by-voxel basis. Three-dimensional (3D) windows 
surrounding each voxel in turn are defined. In our 
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Then the contrast is defined as 
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As shown in Fig. 1, there are multiple hotspots in PET 
volume in SUV, and the tumor cannot be directly localized 
solely based on detecting the highest SUV. After calculating 
the contrast feature (Fig.1 (c)) from PET, only the tumor 
region presents the highest contrast value, while the 
mediastinum could be filtered out. It is because the contrast 
takes into account the information of the neighbouring voxels 
and the more similar values the neighbouring voxels exhibit, 
the lower contrast. Therefore, PET contrast has the capability 
of reflecting the location of tumor in thorax volume, and the 
tumor can be automatically localized by identifying the 
highest contrast value.  

 
Figure 1.Analysis of PET volume in SUV and PET contrast. (a) PET volume 
in SUV. (b) PET volume represented in pseudo colours (c) the corresponding 

PET volume in contrast. Color bar shows that the red colour corresponds to 

the maximum value and the blue for the minimum.  

 
After the tumor being localized, its boundary definition in 

PET images is implemented based on our previous work 
(TCD) [4], because it is capable of segmenting and separating 
tumors even when they are adjacent to other tissues. 

B. Decision and Classification Strategy for Tumor 

Segmentation from PET or CT 

In order to make full use of the advantages of PET and CT 
images according to different cases respectively, our 
algorithm includes a decision scheme for automatic 
classification of the studies into simple cases or complicated 
cases. The simple cases indicate that the tumor is clearly 

separate or “isolated” from other tissues/organs, and therefore 
its boundary can be clearly identified on CT. Hence, the 
segmentation can be based on CT. The complicated case 
means that the tumor may be adjacent to mediastinum or 
attached to chest wall, and CT is less helpful for boundary 
definition, and therefore, the segmentation would depend on 
PET. 

Boundary expansion on PET: In order to automatically 
classify the studies, we expand the tumor boundary by TCD 
to include more surrounding tissues or structures. This 
boundary expansion is obtained by including voxels with 
20% maximum SUV value (maxSUV) to compensate TCD 
delineation in which voxels with or less than 20% maxSUV 
are excluded as non-tumor tissues.  

Decision strategy based on CT: The boundary expansion 
is mapped onto CT and the decision making region (DMR) is 
defined as the region between the initial boundary and the 
expansion boundary. Because intensity distributions of lung 
region are substantially different from those of chest wall or 
the mediastinum, and the difference of the intensity 
distributions between DMR and the lung can be used as 
reference for decision making. If the distribution of DMR is 
similar to lung region, then the tumor is considered as isolated 
or a simple case (Fig. 2 (a)). Otherwise, it is a complicated 
case (Fig. 2 (b), (c)). Accordingly, the segmentation makes 
full usage of CT or depends on PET.  

C. Algorithm 

Algorithm: Lung Tumor Localization and Segmentation 

Input: PET SUV volume and CT volume 

Output: Tumor delineation on PET-CT volumes 

1 Tumor localization and definition   

(1) Calculate contrast in PET volume 

(2) Tumor localization by the highest contrast 

(3) Tumor definition by TCD 

2 Decision strategy for tumor segmentation from PET 

or CT 

(1) Expand tumor region with a threshold of 20% of 

maximum SUV; 

(2) Map the PET tumor expansion region onto CT 

volume to define DMR 

(3) If (DMR and lung have similar distributions){ 

       The tumor is isolated from the surroundings  

       Tumor segmentation from CT 

    }     

Else { 

The tumor is in close proximity of 

surrounding structures such as mediastinum 

or chest wall. 

Tumor segmentation from PET 

} 

 

 
Figure 2. The initial and expansion boundaries. The green circles are initial 

boundaries. The yellow circles are expansion boundaries. Tumor (a) is 

isolated and marked as simple case. (b) and (c) complicated cases. (b) 
attached to chest wall, (c) adjacent to mediastinum. 

(a) (b) (c) 

(a) (b) (c) 
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III. EXPERIMENTS AND DISCUSSION 

A. Clinical Data 

We used 20 thorax PET-CT NSCLC studies from a 
Biographic True V 64-slice PET-CT scanner (Siemens 
Medical Solutions). The CT scans were reconstructed using a 

matrix of 512  512 pixels with pixel size of 0.98 mm  0.98 

mm  2 mm. The PET scans were reconstructed using a 

matrix of 168  168 pixels with pixel size of 4.07 mm  4.07 

mm  2 mm. Among the 20 datasets, there are 14 simple cases, 
six complicated cases, including four chest wall cases, and 
two mediastinum cases. The PET is rescaled to the same size 
of its corresponding CT during their mapping stage.  

B. Contrast Feature Analysis 

In order to investigate the contrast features of tumor and 
other tissues, 10 datasets with manually delineated tumor 
contours by clinics were used. The contrast values were 
divided into two groups, the tumor and other parts of the 
thorax, including the mediastinum and chest wall. Fig. 3 is the 
histogram distribution analysis of the contrast features and 
demonstrates that the tumors always present high contrast 
values.  

C. Quantitative Validation  

We compared our approach with five other delineation 
methods: 1) a threshold of 40% of maximum SUV, referred as 

RG40; 2) a threshold of 50% of maximum SUV, referred as 
RG50; 3) Fuzzy C-means with two clusters, referred as FCM; 
4) the watershed, referred as WS; 5) TCD; and our method 
was referred as DM. The overlap between each case and its 
corresponding ground truth was calculated using Dice’s 
similarity coefficient (DSC) as (8): 

 

 
Figure 3. Histogram Distribution of PET contrast features. The red bars are 
tumor samples, and the blue bars represent the other thorax tissues. 795 

tumor samples and randomly selected 900 other thorax tissues samples. The 

horizontal axis represents the value of contrast feature, and the vertical axis 
the quantity of samples. 
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where V1 was the ground truth, V2 was the volume obtained 
from each of the delineation approach.  
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Figure 4. Automated localization and segmentation of lung tumor
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Figure 5. Dice’s similarity coefficient (DSC) of six different approaches over 

20 datasets. 
 

Fig. 4 illustrates the tumor segmentation procedure by our 
algorithm.  

The DSC comparison of the six approaches was shown in 
Fig. 5. DM achieved the highest average DSC of 0.89, 
followed by TCD of 0.78. The reason for the increased 
segmentation accuracy is that in DM, for the simple cases 
(with DSC of 0.94), the segmentation was performed on CT 
images that provide better boundary definition. 

 

IV. CONCLUSION 

Our automated tumor localization and segmentation 
method utilized PET and CT images features including PET 
SUV, gradients, contrast and CT intensity distribution. The 
PET contrast was valuable in automatic tumor localization; 
SUV and gradients served for tumor delineation from PET; 
and CT intensity distribution was effective in decision and 
classification of tumor cases. This automatic approach made a 
better use of complementary PET-CT information to achieve 
improved tumor segmentation. Experimental results validated 
that our algorithm outperformed its counterpart methods in 
terms of DSC measure.  
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