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Abstract— Targeted transcranial stimulation with electric
currents requires accurate models of the current flow from
scalp electrodes to the human brain. Idiosyncratic anatomy of
individual brains and heads leads to significant variability in
such current flows across subjects, thus, necessitating accurate
individualized head models. Here we report on an automated
processing chain that computes current distributions in the
head starting from a structural magnetic resonance image
(MRI). The main purpose of automating this process is to
reduce the substantial effort currently required for manual
segmentation, electrode placement, and solving of finite element
models. In doing so, several weeks of manual labor were
reduced to no more than 4 hours of computation time and
minimal user interaction, while current-flow results for the
automated method deviated by less than 27.9% from the man-
ual method. Key facilitating factors are the addition of three
tissue types (skull, scalp and air) to a state-of-the-art automated
segmentation process, morphological processing to correct small
but important segmentation errors, and automated placement
of small electrodes based on easily reproducible standard
electrode configurations. We anticipate that such an automated
processing will become an indispensable tool to individualize
transcranial direct current stimulation (tDCS) therapy.

I. INTRODUCTION

Transcranial direct current stimulation (tDCS) applies
weak constant currents (ranging from 0.2 mA to 2 mA) to
the surface of the scalp [1]-[3]. Researches have shown that
it can improve performance in some learning tasks and it
has shown promise as a potential therapy for a number of
neurological disorders such as depression, fibromyalgia and
stroke [4]-[7]. In conventional tDCS protocols, saline-soaked
large-pad sponges (25–35 cm2) are used [1]. However, these
are cumbersome and result in non-focal current distributions
on the brain. In contrast, high-definition tDCS (HD-tDCS)
uses a number of gel-based ring electrodes, and modeling
studies have shown that this can be used to improve targeting
[8]. HD-tDCS provides flexibility in placing multiple elec-
trodes on the scalp. Both focality as well as intensity can
be optimized by an appropriate choice of current intensity
through each of the electrodes [9].

To estimate and target current flows one requires accurate
anatomical models of the human head. Unfortunately, brain
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anatomy varies significantly among subjects due to the id-
iosyncratic folding of cortex, skull thickness and the volume
of cerebrospinal fluid (CSF). These anatomical variabilities
can greatly affect the current flow in the head. Therefore, to
assure accurate and effective targeting it is paramount to use
anatomically accurate head models of the individual subjects,
which should capture the main structures affecting electrical
conductivity: brain, ventricles, CSF, skull, scalp, and air
cavities. All of these can be deduced from intensity contrasts
in anatomical magnetic resonance images (MRI), which are
readily available in many clinical settings. However, the
need for individualized models is currently encumbered by
the labor intensive process of manually segmenting an MRI
image, placing electrodes on the resulting head model, and
computing current-flow distributions using the finite element
method [8]. In total this process at present can take up to
several weeks with the majority of time consumed by manual
segmentation. While a number of automated segmentation
techniques are freely available for the human brain, at present
none gives satisfactory results on the entire volume of the
head.

This paper presents the results of a development effort
to fully automate current-flow modeling for individualized
treatment with the HD-tDCS. Based on the T1-weighted MRI
image of a given subject, a tissue segmentation is established,
virtual electrodes are placed on standard scalp locations and
a finite element model (FEM) of current flow is solved for
each electrode/reference pair. With this, one can then readily
compute the optimal electrode configuration for a desired
target [9] on an individual subject basis. We compared this
automated method with the traditional manual method in
terms of segmentation accuracy and accuracy of resulting
current flows. Results show that the automated process can
achieve a substantial benefit in time and labor with only a
modest loss in accuracy.

II. METHODS AND RESULTS

The entire processing chain is shown in Fig. 1.

A. MRI Segmentation Performances

T1-weighted MRI scans of the head were performed
on three healthy subjects (two males, average age 35.7
years, range 33–40 years) with an isotropic resolution of 1
mm3. These MRI images were segmented by a probabilistic
segmentation routine (New Segmentation, an extension of
Unified Segmentation [10]), which is a function of Statistical
Parametric Mapping 8 (SPM8, Wellcome Trust Centre for
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Fig. 1. Processing chain for individualized current-flow modeling.

Neuroimaging, London, UK). An improved Tissue Proba-
bility Map (TPM, see [11] for details) was used, and each
head was segmented into six tissue types: gray matter (GM),
white matter (WM), CSF, skull, scalp and air. For subsequent
FEM analysis in current-flow modeling, these resulting six
tissues were converted into binary masks, and errors in
these masks such as rough tissue surface, discontinuities
in CSF and skull layers, and disconnected regions were
corrected by an automated routine in Matlab (R2010b, Math-
Works, Natick, MA) using Gaussian filters, morphological
and Boolean operations. To evaluate the performance of this
automated algorithm, we also performed manual corrections
in ScanIP (version 4.2, Simpleware Ltd, Exeter, UK). Then
the deviation of automated segmentation results from man-
ual segmentation was calculated, as shown in Fig. 2 (left
column).

The average segmentation deviation of the whole head
across subjects is 5.8%. While the averaged deviations of
CSF, skull and air are somewhat higher (CSF 11.8%, skull
17.5%, air 43.8%), the overall deviations are dominated
by the large volume of GM, WM and scalp, which have
relatively lower averaged deviations (GM 2.8%, WM 1.9%,
scalp 3.2%).

Fig. 2 (left column) also compares the segmentation accu-
racy with an earlier version of our technique [11]. The TPMs
are largely the same, while the post-processing technique has
been improved by ensuring continuities of CSF and skull,
and by adding mask smoothing (including smoothing air
mask). These improvements are important for the purpose
of current-flow modeling. For the average segmentation
deviations of the first five tissue types, the earlier method
leads to a deviation of 10.2%, 17.7%, 16.6% (for Head
1, 2, 3, respectively), and the improved version results in
4.6%, 8.0%, 9.6%, respectively. Pairwise t-test shows that the
improved post-processing technique outperforms the earlier
version (t(2) = 6.2, p = 0.02).

B. Current-Flow Modeling Results

Electrodes were placed following the convention of the
standard 10-10 international system [12] for both automat-
ically and manually corrected tissue masks. An additional
row of electrodes and four additional electrodes around the
neck were placed on Head 1 to allow potential deeper lower
lying cortical targets and distant reference electrodes. To
avoid complications in automatically placing electrodes near
or behind the ear-lobes we omitted positions TP9 and TP10
in all the three heads (Fig. 3a). Electrode placement was
implemented in Matlab, intialized by four points (nasion,
inion, pre-auricular right and pre-auricular left) provided by
the user.

After electrode placement, a volume conductor model
can be established for the whole head, with each tissue
mask representing an area of uniform conductivity (Fig.
3). ScanIP (+ScanFE Module) was used to generate the
finite element model for the whole volume with adaptive
irregular element sizes (ScanFE-Free algorithm). Separate
models were constructed from the automatically corrected
masks and the manual masks. When current applied to the
FEM model of the head, the resulting electric potential
distribution V in the volume satisfies Laplace’s Equation
[13]:

∇⃗ · J⃗ = ∇⃗ ·
(
σE⃗

)
= −∇⃗ ·

(
σ∇⃗V

)
= 0, (1)

where J⃗ , E⃗ are the current density and electric field, respec-
tively, σ is the conductivity for a specific tissue type, and ∇⃗
is the gradient operator.

Abaqus (version 6.9, SIMULIA, Providence, RI) was used
to solve the Laplace equation, with the following boundary
conditions: electric insulation for all outer boundaries: n⃗ ·
J⃗ = 0; continuity for inner boundaries: n⃗ ·

(
J⃗1 − J⃗2

)
= 0;

inward current flow for anode: −n⃗ · J⃗ = Jn; and ground for
cathode(s): V = 0. n⃗ is the normal vector of the boundaries,
J⃗1 and J⃗2 are current densities in two different tissues, Jn is
the amount of stimulating current, which was set to 1 A/m2,
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Fig. 2. The deviations of automated segmentation results (left column) and electric fields obtained from automated method (right column), as compared
to manual method. For each head, the last group (WH) stands for whole head. Note that in the left column, air was not evaluated in the earlier technique
(thus no result for WH). In the right column, it is the deviation of improved automated technique from manual method, and air was not evaluated since
we do not care about the current flow in the air.

and each tissue type was assigned a conductivity as in [9]. We
implemented both bipolar and 4 × 1 configurations [8] when
simulating the current flows. In the bipolar configuration,
we chose Iz as cathode, and selected the anode from three
different regions on the scalp: forehead (Fp1), motor area
(C3) and occipital area (O1). We also simulated a distant
reference in Head 1: Cz as anode and front neck electrode
(Nk1) as cathode. In Head 2 and Head 3, since no neck
electrodes were placed, electrode pair FT9-FT10 was solved.
In the 4 × 1 configuration, C4 was set as anode and the four
surrounding electrodes (FC2, FC6, CP2, CP6) were cathodes.

The solutions from Abaqus are the distributions of electric
field induced by the stimulating current. They were imported
into Matlab and interpolated onto a regular grid with the
same dimension and resolution (i.e. 1 mm3) as the original
MRI data. Electric fields from both manual and automated
methods (the present improved technique) were solved, vi-
sualized and compared. As an example, Fig. 4 shows the
distributions of electric fields from both methods in GM and
WM for Head 1. Note that the electric field shown here is
recalibrated corresponding to a 1 mA current injection. The

distributions from manual and automated methods are similar
to each other except close to the electrode locations due to the
local structural differences. Fig. 2 (right column) shows the
deviations of the automated results from the manual results.

The average deviation of electric field across the entire
head for all subjects and configurations is 27.9%. This
value is approximately five times of the overall segmentation
deviation, indicating that the current flow is sensitive to the
structural differences. In particular, the segmentation differ-
ences in CSF and skull in heads 2 and 3 seem to lead to large
deviations in the computed electric field. This is expected
as the stark contrast of conductivity values between these
two areas causes strong blurring of current distributions. It
is especially pronounced in the 4 × 1 configuration which
is dominated by the local skull/CSF distribution. It should
also be noted that Head 1 has a much better image quality
(in terms of intensity contrast) than Head 2 and 3, leading
to a much better performance in Head 1. (In fact, Head 1
was scanned on a different scanner with different scanning
parameters from Head 2 and 3.)
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Fig. 3. Head model established from six tissue types and electrodes. From
a to f: scalp (with electrodes placed), skull, CSF, GM, WM, air. Note that
the air outside the head was removed in the air mask since it is not needed
in the current-flow modeling.

Fig. 4. The distributions of electric fields in GM and WM in Head 1 for the
manual (first row) and automated method (second row), and the difference
of the two methods (third row). Arrows indicate the approximate electrode
locations.

C. Computation Time Comparison

The moderate loss in accuracy comes at a tremendous
advantage in computational time and workload. Typically,
manual correction of segmentation errors and manual elec-
trode placement is a labor intensive process which requires
several weeks of full-time work. In contrast, with this
automated processing method, segmentation touch up and
electrode placement take at most 10 minutes. The whole
process to compute a current-flow model requires up to 4
hours, with the majority taken up by FEM generation (1–
2 hours, ScanIP) and FEM solving (1–1.5 hours, Abaqus)
for a typical mesh size of 1.5 million nodes. Therefore,

one can quickly simulate the current distribution in the head
between any desired pair of electrodes for a given subject.
This is very useful for clinical applications since doctors can
obtain tDCS forward models several hours after the MRI scan
of the patient and plan the strategy for electric stimulation
therapy based on these simulation results. To this end, future
work will focus on packaging this automated process into a
software with a user-friendly interface.

III. CONCLUSIONS

This paper proposed a fully automated processing chain
for the simulation of current flows in the head for tDCS
therapy. It automated the traditional manual methods in
correction of segmentation errors, electrode placement and
finite element model solving, reducing the total processing
time from weeks to hours. Meanwhile, the average deviations
of segmentation results and current-flow results are limited
to just 5.8% and 27.9%, respectively. This opens up the
possibility of subject-specific tDCS therapy, which was not
feasible in practice up to now.
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