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Abstract—Previously we developed an active contour method
for segmenting and tracking cells in phase-contrast microscopy
images. Our method is capable of fine-grained segmentation on
noisy image sequences. In this paper, we improve the active
contour segmentation model to provide better accuracy, by
selectively identifying areas of the contour with low confidence
and removing them. The method is applied to HMEC-1 cells
(human microvascular endothelial cells). The segmentation pro-
vided by the method is quantitavely compared with manually-
drawn contours, showing close fit and capability to ‘lock’ on
to cell boundaries for hundreds of frames.

I. INTRODUCTION

Tracking biological cells is of importance in the biological

sciences. Information obtained from tracking migrating cells

in vitro (from e.g. scratch wounds [1]) can be used to study

cell-cell interactions [2], cell division [3], differentiation [4],

and identify cell necrosis and apoptosis (as these processes

are marked by specific changes in morphology [5]).

Active contours [6] are a method of image segmentation

that are used widely in the biological sciences, such as anal-

ysis of MRI images [7] and tracking cells [8][9]. In addition,

recent work has been able to apply active contour techniques

to very low-contrast images [10]. The active contour method

is as follows: An initial boundary (the contour) is drawn

around an object. The boundary is then deformed according

to internal and external energy functionals to find a better fit

around the object. A boundary for an object in one frame

may be used as the starting point for its boundary in the

next.

In the active contour variant given in this paper, only

external energy is used. The contour is represented as a

piecewise-linear curve, and it is subdivided to better fit into

protrusions. Our method finds a globally optimal curve and

has no internal energy.

II. ACTIVE CONTOUR METHOD

Let the contour be represented as p̂(s) = (x(s), y(s)),
where s ranges from 0 to 1. Define the energy of the curve

as:
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Where L is the total length of the curve, G is the

underlying gradient field of the image (computed using a

Sobel filter) and N is the normal vector of the curve.

We calculate the gradient using the Sobel filter, due to its

attractive properties of computational simplicity and locality.

In the rest of this paper, we assume our contour is

piecewise-linear i.e. it is defined by a set of points p̂i
(1 < i < n) that are connected together in sequence.

At each frame, we may extrude the vertices of the contour

to better fit the image at the next frame (see Fig. 2). Instead

of extruding in every possible direction, we only allow the

vertex to be extruded normal to the curve. This greatly

reduces the number of possible extrusions that need to be

considered. This is also in line with cell dynamics in which

membrane extrusion happens locally. The normal is calcu-

lated in a ’multi-scale’ way so as to minimize the influence

of small-scale noise on the extrusion. In detail, this is done

by convolving the tangent vectors of the neighbors of each

point with a gaussian with standard deviation proportional

to the extrusion level. Consider, for example, a point p̂i on

the curve. The tangent vector at that point, for an extrusion

level x, is given by:

Ti =

i+M
∑

j=i−M

e−c2ij/2x
2

(p̂i − p̂j) (2)

Where M is some number chosen to be large enough

so that the exponential decays to zero and the contour is

assumed to ‘wrap around’ i.e. p̂i = p̂i+n where n is the

number of points on the contour. In addition, cij is the

cumulative distance from p̂i to p̂j :

cij =

j
∑

k=i

‖p̂i − p̂j‖ (3)

The normal, then, is simply chosen to be the unit vector

perpendicular to Ti.

As mentioned previously, at each iteration we may extrude

each pixel by an independent amount. We refer to a vector

of extrusions levels, one for each vertex, as an extrusion.

Note that we fix a limit to how far a vertex can be extruded.

For the purposes of this paper, this limit has been set to 16

pixels.

One issue with the global minimization scheme is that

since the number of vertices on the contour does not change

it sometimes becomes problematic for the contour to fit

into protrusions. To overcome this problem we used an

iterative refinement scheme where a curve fitting step is

performed, edges that have become stretched are subdivided,
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Fig. 1. Iterative refinement. a) Initial contour. b) Fit to image boundary. Due
to roughness of contour, it is impossible to perfectly match the boundary.
c) Refinement of boundary. d) New fit using refined boundary.

then another step is performed. This is done until the size of

the subdivided segments gets down to the order of the size

of the pixels, at which point further subdivision is not likely

to yield improvments (see figure 1).

Given these definitions, our active contour method is as

follows:

1) Manually draw contour r0 for first frame.

2) Simplify the contour.

3) For contour rk , obtain rk+1 by finding the extrusion

that minimizes the global energy EX of the curve.

4) Subdivide the curve and repeat steps 2 and 3 unless

the length of each segment goes below one pixel.

5) Advance to the next frame and repeat steps 2-4 until

the end of the data series.

Simplification (step 2) is only done to ease the com-

putational load, and may be omitted. The simplification is

performed heuristically by removing vertices until no edge

is of length larger than a given threshold (chosen arbitrarily

as 8 pixels for the purposes of this paper). Vertices are not

removed if they are on sharp corner (less than or equal to

45 degrees). Step 3 is performed using the Bellman-Ford

algorithm. Since the exact global minimum is always found,

the details of the minimization algorithm are not relevant to

the results presented in this paper.

A. Improvements

The iterative subdivision scheme (steps 3-4 in the algo-

rithm) allows for effective protrusion of the contour into

rapidly-protruding areas of the cell. However, it is less

effective at fitting into retracting protrusions. This can be

seen in Fig. 6 and is depicted schematically in Fig. 4. In

addition, the initial version of our method suffered from self-

intersections that had to be automatically-removed at each

step (see Figs. 2 and 5). Both of these problems were solved

by simply including a procedure that removes low-confidence

areas of the contour (see Fig. 4), where confidence is defined

as simply the local edge energy according to equation 1. We

arbitrarily chose 5% of the maximum possible edge energy

as a cutoff level below which edges should be removed.

We term this procedure low-confidence removal. We found

that under this scheme, the number of self-intersections were

reduced (as an example, see Fig. 5). This is because the lower

rate of self-intersection testing (once per frame instead of

once per step) allows minor perturbations in the curve that

cause self-intersections the chance to be corrected before

clipping takes place.

1 2 3

Fig. 2. Intersection removal. After fitting, some parts of the contour may
develop self-intersections. In the first iteration of our method, we solve this
by cutting out the intersection loops (3). In our improved method, we do
this by removing areas of low confidence.
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Fig. 3. Extrusion at each frame. The original contour is the solid line, and
a new contour may be produced by extruding, for example, points b and c

by any amount.

III. MATERIALS AND METHODS

The HMEC-1 cells were obtained from ATCC under

licence from the CDC (Centre for Disease Control). Cells

were cultured in MCDB-131 media (Invitrogen) supple-

mented with 10% fetal bovine serum (FBS), l-glutamine

(10mmol/L), penicillin/ streptomycin. Culturing took place in

a CO2/O2 incubator at 37C. Once cells reached confluence

they were harvested by trypsinisation. Cells (low passage

612) were seeded into 30mm Petri dishes (Nunc) containing

with silicon inserts (ibidi). Cells were seeded at a very

low density of approximately 5000 cells/cm2. Time lapse

experiments were conducted with a Nikon BiostationTM

IM. Cells and dishes were allowed to equilibrate for 20-

30 minutes in the Biostation chamber prior to imaging to

allow the temperature/humidity to equilibrate and remove

any condensation. During this time, regions of interest were

determined and programmed using the Biostation IM soft-

ware. Data were collected as original Biostation .NES files

and also converted to AVI movies for visualisation.The time-

lapse series was constructed by taking a single image of

each region of interest every 2 minutes. Data analysis was

conducted on the original time-lapse stills extracted from the

NES files. Our own custom software was used for producing

outlined and tiled images. Sample cell movements and the

outlines produced by our software can be seen in Fig. 7.

a b c d

Fig. 4. Confidence-based contour adjustment. The contour (black dots
connected by solid line) has been fit to the image (a). At the next frame,
the cell retracts a previously-extended protrusion (b). Extrusion-based fitting
cannot find an optimal fit to the image, because the angle of the new contour
is roughly orthogonal to the original contour (c). However, if we remove
the parts of the contour that have low confidence, a good fit can be obtained
(d).
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Fig. 5. Removal of self-intersections leads to the occasional clipping of
narrow cell protrusions (bottom). Numbers indicate frame number; frame 1
is the first automatically-found frame (this is the same in all other figures).
Frame 2 is the second and where the clipping occurs. The improved method
(figures 6 and 7) does not suffer from this problem.

1 2

1 2

Fig. 6. Low-confidence removal allows better fitting into retracting pro-
trusions. Middle: Self-intersection removal does not apply since retraction
does not self-intersect. Bottom: Using low-confidence removal. Note that
there are no self-intersections in these images, despite the appearance of
overlap in the indicated area (black arrow). Rather, the overlap appears to
occur because the contour have been thickened for display purposes.

IV. PERFORMANCE

To quantify the performance of the method, the outlines

that were produced were compared with manually-drawn

contours. Let the points of the computer generated contour

be p̂i, where i is an integer between 1 and n, and let the

points of the manually-drawn contours be ri, where i is an

integer between 1 and m. The forward average Hausdorff

distance is defined as:

df =
1

n

n
∑

i=1

d(p̂i, r) (4)

Where d(p̂i, r) is defined as the distance from the point

p̂i to contour r. In addition, the backward average Hausdorff

distance is defined as:

db =
1

m

m
∑

i=1

d(ri, p) (5)
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Fig. 7. Automatically-generated contours for an HMEC-1 cell moving in
isolation. As can be seen, the high contrast for these cells enables a tight
lock on the boundary for a large number of frames. Note that, as in Fig. 6,
there are no self-intersections in these images.

For the fit on HMEC-1 cells, we observed that cell contrast

is high enough that for each portion of the cell edge, the

method either misses it entirely or is able to maintain a

lock with sub-pixel accuracy (see Fig. 7). Therefore, the

average distance would not be an effective indicator, since

the distance at some points of the boundary would be very

high and at others it would be very low. For the low-

distance areas, any error would in our belief most likely be

due to inconsistencies in manually-drawn lines (see Fig. 8).

However, in the absence of any other objective metric, we

use average Hausdorff distance as a baseline comparison.

V. CONCLUSIONS AND FUTURE WORK

An active contour method was developed and applied to

HMEC-1 cells, showing high performance and indicating the

applicability of this active contour method to segmenting

cells. The generated cell outlines and the average Hausdorff

distance were shown for a single cell over 220 frames. 220

frames were chosen only since the cell in question is ‘free’

during this period and does not interact with other cells. We

believe this method represents a powerful new tool for semi-
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Fig. 8. Comparison of average contour distances between contour produced
by our software and expert-drawn contour. Plot is for HMEC-1 cells. Top:
with no low-confidence removal; bottom: with low-confidence removal.
Even though the software is capable of ’recovering’ into the right shape,
low-confidence removal provides noticeable improvement in intermediate
frames. As can be seen, the error rarely exceeds 6 pixels. In addition,
the error is relatively consistent throughout the tracking period, indicating
indicating that the lock on the cell is maintained.

automated tracking and analysis of cell movements, offering

the opportunity of quantitative analyses on large data sets

with minimized concern for tracking inaccuracies.

In addition, we have applied this method to low-contrast

images of human hNT astrocytes and compared with the

performance with previous active contour methods, such as

those found in the popular ImageJ software. This will be

subject of a future paper [11].
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