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Abstract— Determination of region in a space of multimodal
features of brain MR images requires kernel estimation tec-
niques with bandwidths that are adapted locally. The bandwidth
selection is a critical aspect at the filtering stage of image
segmentation. This work presents two methods for determinate
the adaptive bandwidth in the application of density estimation,
in the segmentation of regions at the feature space of an MRI.
Two adaptive methods: sample point and k-nearest neighbors,
where applied for real and synthetic data, achieved similarity
indexes of 0.68 and 0.71 for gray matter and white matter
respectively.

I. INTRODUCTION

Image segmentation is a very important step in image
processing. It plays a crucial role in extraction of useful in-
formation and attributes from images for all medical imaging
applications. It is one of the important steps leading to image
understanding, analysis and interpretation. The principal goal
of image segmentation is to partition an image into regions
(or classes) that are homogeneous with respect to one or
more characteristics or features under certain criteria [1].

Automated MRI segmentation classify brain voxels into
one of three main tissue types: gray matter (GM), white
matter (WM) and cerebro-spinal fluid (CSF) [1]; the seg-
mentation of structures of MRI is applied in the study of
many disorders, such as multiple sclerosis, schizophrenia,
epilepsy, Parkinson’s disease, Alzheimer’s disease, cerebral
atrophy, etc [2]. Additionally, MRI segmentation is important
in image processing to identify anatomical areas of interest
for diagnosis, treatment, surgical planning, image registration
and functional mapping [1]. For this task is been used the
supervised approaches, where intensity values of labeled
voxel samples from each tissue must be provided during
the learning phase. In a subsequent classification phase, the
unlabeled voxels are classified using a selected classifier.
This method requires human interaction to select the samples
and is therefore semi-automatic [1].
Statistical segmentation techniques define a parametric
model representing the tissue, assuming particular distribu-
tion forms on the selected feature space; this assumption
can introduce artefacts implied by the density model choice.
The use of nonparametric approach is to let the data guide
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a search for the function which fits them best without the
restrictions imposed by the parametric model [3]. A cluster-
ing technique which does not requires prior information of
the numbers of clusters, and does not restricts their shape of
the density distribution is the Mean Shift (MS) procedure.
This procedure is an iterative technique which estimates the
modes of the multivariate distribution underlying the feature
space; the number of cluster is obtained automatically by
finding the centers of the densest regions in the space [4].
However one of the limitations of mean shift is the speci-
fication of parameter named the kernel width or bandwidth.
In this paper it is shown that using an adaptive bandwidth
in the MS obtained in two different ways, improve the
results in the filtering stage in the segmentation process. The
adaptive bandwidth was applied to real and synthetic data of
brain MRI and the results achieved show that the adaptive
bandwidth is better than fixed bandwidth both in real and
synthetic data.
The paper is organized as follows. In Section 1 is introduced
the fixed bandwidth, the limitations of the fixed bandwidth
are reviewed in Section 2. Section 3 presents the two types
of adaptive bandwidth used. In Section 4 the results obtained
will be shown with the adaptive bandwidth for real and
synthetic data. Finally, conclusions are presented in Section
5.

II. FIXED BANDWIDTH DENSITY ESTIMATION

The multivariate kernel density estimation with kernel K
and window width h is defined by [3], [5]:

f̂(x) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
(1)

The kernel function K(x) is a function defined for d-
dimensional vectors Xi, i = 1, . . . , n that are the given
multivariate data set whose underlying density f is unknown
and must be estimated. The kernel is taken to be a radially
symmetric, non-negative function, centered at zero and in-
tegrating to one, an example, the multivariate Epanechnikov
that is an optimal kernel for minimize the error at the density
estimation function [5]:

Ke(x) =

{
1
2c
−1
d (d+ 2)(1− xTx) if xTx < 1

0 otherwise
(2)
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where Cd is the volume of the unit d-dimensional sphere.
Substituting (2) in (1) and after some algebraic manipula-
tions, it is obtained what is know as mean shift (MS):

Mh(x) =
1

nx

∑
Xi∈Sh(x)

Xi − x (3)

where the size of the region Sh(x) is a function of the
bandwidth h and nx is the number of observations Xi falling
within Sh(x). The MS vector can be improved weighting
each pixel within a region by a confidence edge, such that
the pixels which are situated near one edge less influence
on the determination of the new cluster center. The equation
(3) modified by the inclusion of the weighting of the edge
confidence is set as:

Mh(x) =
1∑

(1− φi)
∑

Xi∈Sh(x)

(1− φi)Xi − x (4)

where φi is the edge confidence associated to Xi. The
terminology fixed bandwidth is due to the fact that h is
held constant across x ∈ Rd. The fixed bandwidth procedure
estimates the density by taking the average of identically
scaled kernels.
The most widely used way of placing a measure on the global
accuracy of f̂ as an estimator of f is the mean integrated
square error (MISE). The MISE allows to observe that one
of the fundamental problems of density estimation includes
the bias and variance. As the bias is proportional to h4, so
for this amount decrease, is necessary that the value of h
should be small. However, if h is small, means an increase
in variance, since the latter is proportional to (nh)−1. This
is known as the trade-off between bias and variance, and it
is a mathematical quantification of the critical role played by
the bandwidth in the estimation of the density function.

III. ADAPTIVE BANDWIDTH

A. Variable bandwidth by sampling point method

For multivariate data, a correct choice of bandwidth is
a very complex problem,- One of the most used method
for local bandwidth adaptation, consider the bandwidth
proportional to the inverse of the square root of a first
approximation of the local density. The bandwidth h can
varied on each data point h = h(Xi). For each point Xi,
can be obtained the sample point of density estimator [3]:

f̂sp =
1

n

n∑
i=1

1

h(Xi)d
K

(
x−Xi

h(Xi)

)
(5)

for which the estimate of f at x is the average of differently
scaled kernels centered at each data point. The sample point
estimators are themselves densities, being non-negative and
integrating to one. The bias becomes proportional to h4,
while the variance remains unchanged, h(Xi) is taken as:

h(Xi) = h0

[
λ

f(Xi)

] 1
2

(6)

where h0 represents the fixed bandwidth and λ is a propor-
tional constant. It is important to say that f(Xi) is unknown

and must be estimated (called pilot) from the data in first
stage, and is denoted by f̃ . The strategy used for this sample
point method is:

1) Find the pilot estimate f̃(Xi) that satisfies f̃(Xi) > 0
for all i.

2) Define the factor bandwidth λ by:

logλ = n−1
∑

logf̃(Xi) (7)

In the first step, to build the pilot estimator can be used the
mean shift procedure with fixed bandwidth.

B. Variable bandwidth by k-nearest neighbors

Another method that define the bandwidth used by the
pilot density estimation is the nearest neighbors [6], [3] [7].
The nearest neighbor rule relies on a metric function between
patterns. A metric, is a function that provides a generalized
distance between two patterns. The Minkowski metric is one
general class of metrics for d-dimensional patterns, where
the number of k-neighbors must be chosen large enough to
ensure that there is an increased density where all the kernels
have bandwidths hi. Be Xi,k, the k-nearest neighbor to point
Xi so is taken:

hi =‖ Xi −Xi,k ‖1 (8)

where L1 norm is used [6].
Once completed the filtering image data applying the MS

procedure using the variable bandwidth method: sampling
point and k-nearest neighbors; it is obtained an image with
intensity homogeneous regions, each of them corresponding
to one mode found. After filtering, the next stage is the fusion
of regions, where regions with some similarity are joined
with the aim of decreasing the over-segmentation. A pruning
phase is used to eliminate those very small regions that by
themselves can not be a brain structure. The last stage is the
classification of regions obtained after the pruning stage, so
we use a priori information contained in probabilistic maps
of white matter, gray matter and cerebrospinal fluid [8] for
the image segmentation in these three classes.
The segmentation methodology applied can be summarized
as follows:

1) Estimation of the Edge Confidence Map from the data.
2) Filtering of the data by the process of MS using both

methods of adaptive bandwidth.
3) Fusion of regions through Region Adjacency Analysis

and Pruning of regions.
4) Region classification achieved by the a posteriori prob-

ability calculated for each probabilistic map.

IV. RESULTS

The performance of the segmentation process by mean
shift was evaluated with real and synthetic images. This im-
ages were taken from the Internet Brain Segmentation Repos-
itory [10] and the BrainWeb: Simulated Brain Database
(SBD) [9], respectively. The synthetic data corresponds to
a brain digital phantom of T1 weighted images with a
181×217×181 size, 1 mm3 voxel resolution, 3% noise, and
20% intensity inhomogeneity. For this volume the ground
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truth was available for quantitative comparison. The real data
consist of 20 normal brain MR of T1 weighted data sets and
their corresponding manual segmentations provided by the
Center for Morphometric Analysis at Massachusetts General
Hospital and available at [10]. The voxel resolution is 1 mm
axial axes, 3 mm coronal axes and 1 mm sagittal axes. For the
classification stage was used a priori information contained
in probabilistic maps available in the software SPM [8].

A. Synthetic Data
To process the data with the fixed bandwidth is used a

bandwidth of spatial and intensity hs = 6 and hi = 9 re-
spectively. Figure 1 shows the results obtained at the filtering
stage using the three types of bandwidth (fixed, sample point
and k-nearest neighbors). The fixed bandwidth is consider
the initial estimation of the sample point bandwidth h(Xi),
that is used in the information processing with adaptive
bandwidth and whose result is shown in Figure 1 at the
bottom left. For the method of k-nearest neighbors, which
is the third form of data processing, we used a k = 200,
and the result obtained is shown in the lower right corner of
Figure 1.

(a) (b)

(c) (d)

Fig. 1: a) Synthetic data slice 70 at the stage of MS filter. b) Filter image using fixed
bandwidth with hs = 6 and hi = 9. c) Filter image using sample point bandwidth
and d) Filter image using nearest neighbors bandwidth for k = 200

The Figure 2 shows the filtered image segmentation by
classifying each of the regions using the prior information
of the probabilistic maps. The classified images can be seen
more easily in homogeneous intensity regions, that in the
original image, because the MS has removed image noise,
resulting in homogeneous intensity regions, and subsequently
refining the probabilistic classification. The segmented im-
age, using the two types of variable bandwidth, are very
similar quantitatively, as shown Tanimoto indexes of Table
I, but as can be seen from this table, the segmentation using
the estimated bandwidth from sample point has a small
improvement in the rates of white and gray matter compared
to the estimation method for nearest neighbor.

TABLE I: Tanimoto Coefficient for Synthetic Data

Method Background CSF Gray White
Fixed Bandwidth 0.9976 0.4726 0.5681 0.4330

Sample Point 0.9979 0.4454 0.6958 0.5760
k-Nearest Neighbor 0.9956 0.4646 0.6731 0.5595

(a) (b) (c)

Fig. 2: a) Synthetic data slice 70, (b)Segmented image using sample point and
(c)Segmented image using k-nearest neighbor

B. Real Data

The same procedure was applied to real data, by process-
ing the 20 data sets [10]. This 20 volumes have the expert
manual segmentation and this segmentation is considered
the reference to be used to compare our procedures: fixed
bandwidth (Fixed), variable bandwidth by sample point (S.
Point) and variable bandwidth by k-nearest neighbor (k-
nearest) with the methods available at the IBSR, this methods
are: adaptive MAP (AMP), biased MAP (BMAP), fuzzy c-
means (FUZZY), maximun aposteriori probability (MAP)
and maximum likelihood (MLC). We calculate the Tanimoto
average index for each class, for all real data and for the
previously mentioned methods, and this values are shown
on Table II. For the case of the background is not shown
the graphic because it is very similar for all data. Figure
(3) shows the reference image and the images processed
with adaptive bandwidth can be noted a high qualitative
similarity between them. On Figure 4, 5, 6 are plot the
Tanimoto coefficient, and we observed that Figure 4 has
better results using adaptive mean shift than the other method
reported on [10] and [1]. The coefficients obtained with
fixed bandwidth are minor compared to those obtained with
variable bandwidth. Brain studies are plotted in order of
difficulty to segment, being the number 1 the most difficult
and least difficult the number 20.

(a) (b)

(c)

Fig. 3: a) Real data expert segmentation slice 37, (b)Segmented image using sample
point and (c)Segmented image using k-nearest neighbor

V. CONCLUSIONS

The results of image segmentation using a statistical esti-
mation technique, are influenced primarily by the bandwidth
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TABLE II: Average Tanimoto Coefficient for Real Data

Method Background CSF Gray White
Fixed Bandwidth 0.9857 0.5126 0.4420 0.5014

Sample Point 0.9918 0.6363 0.6832 0.7105
k-Nearest Neighbor 0.9903 0.6362 0.6200 0.6560

AMP 0.999 0.069 0.564 0.567
BMAP 0.999 0.071 0.558 0.562
Fuzzy 0.999 0.048 0.473 0.567
MAP 0.999 0.071 0.550 0.554
MLC 0.999 0.062 0.477 0.571

Fig. 4: Tanimoto coefficient for CSF for real data segmenta-
tion using the fixed and adaptive bandwidth

of the kernel, because the quality depends strongly on
the bandwidth used. We can verify that selection of fixed
bandwidth in the estimation of the pilot function for sample
point is not relevant [2]. In the classification stage can be
seen that both methods have good classification rates and the
variation between them is minimal, so can be selected any of
both methods, one disadvantage of the k-nearest neighbors
method is the run time, that is much higher compared to the
sample point method. Using a priori information improves
the classification results of both synthetic and real data, also
we found that the CSF classification is better than results
presented in [1], since they do not use a priori information.
We conclude that using both apriori information and adaptive
bandwidth, sample point or k-nearest neighbors, improves the
segmentation.
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