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Abstract— Most of the existing diffusion models are defined
for gray-scale images. We propose a diffusion model for color
images to be used as external energy for active contours. Our
diffusion model is based on the first-order moment of the cor-
relation integral expressed using ∆E distances in the CIE Lab
color space. We use a multi-scale approach for active contours,
the diffusion being independently computed at various scales.
We validate the model on synthetic images, including multi-
fractal color textures, as well as medical images representing
melanoma. We conclude that the proposed diffusion model is
valid for use in skin lesion segmentation in color images using
active contours.

I. INTRODUCTION

Active contours were introduced in 1988 by Kass, Witkin
and Terzopoulos [1] and they are defined as energy-
minimizing curves guided by various forces, gradually ad-
vancing towards edges in the analyzed image. The active
contours are successfully and widely used for image segmen-
tation in medical applications [2], especially for computed
tomography and brain magnetic resonance imaging. In this
paper we use the active contours to perform the segmentation
of skin lesions, such as melanoma or psoriasis, in dermato-
logical color images.

The initial active contour is incrementally deformed ac-
cording to several specified energies. According to the
original definition, an active contour is a spline c(s) =
[x(s), y(s)], with s ∈ [0, 1], that minimizes the following
energy equation [3]:

ε(c) = εint(c) + εext(c) =

∫ 1

0

[Eint(c) + Eext(c)]ds (1)

where c = c(s), εint(c) represents the total internal energy
and εext(c) represents the total external energy along the
contour c. The internal energy is intrinsic to the spline and
the external energies comes usually from the image data. The
internal energy εint is usually written as:

εint(c) =

∫ 1

0

1

2
[α(s) |c′(s)|2 + β(s) |c′′(s)|2]ds (2)

where c′(s) and c′′(s) are the first and the second deriva-
tives, weighted by α(s) and β(s) which are usually two
constants determined empirically.

Xu [4] identifies several issues of the original model [1],
including the fact that the initialization of the contour has
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to be close to the edge of interest. Those were partially
addressed in the original article [1] by using the propagation
in the scale space, further described in [5] [6]. The placement
of the active contour very close to the edges was solved
by using multi-resolution methods [7], pressure forces [8]
or distance potentials [9]. The basic idea is to increase the
capture domain, so that the active contour could be attracted
from a larger distance.

There are several attempts to extend the active contour
approach to color images, by proposing various diffusion
models for multi-dimensional data. In [10] the external
energy is a weighted mixture of image color contrast and
intensity. The foveal wavelets are used in [11] and the
squared local contrast in the context of a principal component
analysis in [12], both of them being based on extensions of
the now-classical di Zenzo gradient for multi-valued data
[13].

In this paper we propose a new diffusion model for color
images. The external energy forces that drive the active
contours are given by the mean CIE Lab ∆E distance
computed locally at different resolutions for the original
color image. We validate our model in the framework of
a multi-scale active contour approach, using synthetic color
images. Then we present our results on melanoma image
segmentation and conclude this paper.

II. COLOR DIFFUSION MODEL

The correlation integral is used in [14] for the computation
of the correlation dimension, which is a variant of the
fractal dimension [15]. The fractal dimension, which is a
measure of complexity, is widely used for texture charac-
terization. The correlation integral C(r) for a set of points
{X1, X2, · · · , XN} is defined as:

C(r) = lim
N→∞

2q

N(N + 1)
(3)

where q is the number of pairs (i, j) whose distance |Xi−
Xj | is less then r. Basically, the correlation integral is a
cumulative density function for all the distances between the
elements of the set.

Starting from this definition, we propose a diffusion model
for color images based on the first order moment of the
correlation integral. For a certain resolution n, the value of
one point (x, y) in the energetic surfaces is given by the mean
color distance computed in a neighborhood of size n × n
centered in that specific point. If we consider the pixels pi
in the n × n vicinity as placed in a vector of size n2, we
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have to compute the average value of n2(n2−1)
2 distances d

between any two pixel values:

Eext(x, y)|n×n=
2

n2(n2 − 1)

n2−1∑
i=1

n2∑
j=i+1

d(pi, pj) (4)

For the distance between pixel colors we used the CIE
Lab ∆E distance, therefore the external energy forces that
drive the active contours are given by the mean CIE Lab ∆E
distance computed locally at different resolutions, based on
the original image. The CIE Lab color space was created as
an attempt to linearize the perception of color differences,
therefore the color distance associated, called ∆E, is an
Euclidean distance. For two color values p1 = (L1, a1, b1)
and p2 = (L2, a2, b2), the distance d(p1, p2) = ∆E where

∆E =
√

(L1 − L2)2 + (a1 − a2)2 + (b1 − b2)2 (5)

Being related to the fractal dimension, the first-order
moment of the correlation dimension represents a measure
of the local heterogeneity of a texture, in a certain neighbor-
hood at a given resolution. Such a measure will definitely
emphasize the ruptures between two different textures and
implicitly the delimiting edges. In our case, the concept
of diffusion is based on the low-pass filtering behavior of
the computation of texture complexity in a sliding window,
ensuring the required monotony (see also Section IV on
approach validation).

III. THE ACTIVE CONTOUR FRAMEWORK

In order to prove the validity and the usefulness of our dif-
fusion model, we used a multi-scale active contour approach
[16]. For a given image, we compute several pseudo-images
that represent the mean CIE Lab ∆E distance of the image
at different resolutions, i.e. computed with various window
sizes. Initially, the points of the active contour start to move
on the energy surface given by the mean distance computed
in large windows (e.g. 75 × 75 pixels) and, as the points
advance, they use (and jump to) the potential energy given
by the mean distance computed in smaller windows, until the
final active contour crawls on the mean distance computed
in a 3× 3 window.

The points of the active contour move on a certain energy
surface as long as the difference between the potential
energy of the current surface and the next one monotonously
increases (see Figure 1 for an illustration of energy curves
at different scales - the blue curve for the largest and the red
curve for the smallest, corresponding to an ideal rectangular
impulse (with black); an initial point of the active contour is
marked as a square and the arrows indicate its evolution, as it
advanced towards the final edge). When that difference starts
to diminish (i.e. an indication that the next mean distance
surface has enough energy to drive the points of the active
contour), the points of the active contour will use the next
mean distance surface, and so on. The active contour will
stop when it reaches a plateau on the mean distance curve

computed with the smallest window, i.e. the closest to the
final contour. In addition, the points of the active contour
independently move on the mean ∆E surfaces in order to
ensure the rapid convergence of the algorithm towards the
final solution [16]. In our implementation we have used 21
window sizes - the odd sizes from 3 to 35, plus 45, 55, 65
and 75 for the generation of color diffusions.

Fig. 1. How potential energy is used by the points of the active contour.

IV. APPROACH VALIDATION

In the context of our application of skin lesion segmenta-
tion, the hypothesis that we make is that in medical images
of skin lesions there are two types of textures, exhibiting
different complexities: one corresponding to the healthy skin
and the other to the lesion (the complexity of the latter one
being usually larger). Roughly speaking, the healthy skin
is relatively homogeneous, compared to the heterogeneous
surface of a melanoma or psoriasis lesion.

For a synthetic test image with two regions of different
colors we obtain the diffusions at various resolutions, as
shown in Figure 2. The middle horizontal line of every
diffusion image, i.e. energy surface, is represented in Figure
3 as a potential energy curve, illustrating how the computed
mean ∆E distance plays the role of a potential energy. For
the ideal sharp edges of a theoretical rectangular impulse, the
monotony property required by a diffusion model is evident.

(a) Test image (b) 3× 3 (c) 25× 25 (d) 55× 55

Fig. 2. The external energy computed at various scales (window sizes) for
the synthetic test image.

Fig. 3. Sections of the energy surfaces in Figure 2 at various scales.
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Using the framework described in Section III, we sim-
ulated the segmentation of a skin lesion on a synthetic
multi-fractal color texture image, using the model of color
Brownian motion presented in [17]. The synthetic image is
exhibiting two regions of different complexity: one texture
is simpler (color fractal dimension = 2.23), corresponding
to the background and implicitly to the healthy skin, and
one texture more complex (color fractal dimension = 3.84),
corresponding to the object to be segmented (the disc in the
center of the image) - the skin lesion in our case of medical
images. The border between the disc and the background
is difficult to segment using the widely-used segmentation
techniques: JSEG [18], watershed [19], pyramidal decompo-
sition [20] (see Figure 4), compared against the results of our
approach. In our experiments we used the implementations
publicly available, either provided by authors (e.g. JSEG) or
from the Intel OpenCV library. One may argue that for the
mentioned segmentation approaches the final results strongly
depend on the choice of input parameters (color distances,
number of colors), but the results were unsatisfactory for
a wide range of input values. The high complexity of the
disc region determines the active contour not to stop on
the border, but to keep advancing as the calculations of the
total energy indicate that there might be an edge inside the
complex texture. In this way, we simulated the barely visible
edges between a skin lesion and the healthy skin. Figure 5
shows the initial, intermediate and final contours, as well as
two energy surfaces – diffusions at two different scales.

(a) JSEG (b) watershed (c) pyramidal (d) our approach

Fig. 4. Segmentation results using various approaches.

(a) contours (b) 3× 3 (c) 35× 35

Fig. 5. Results on a synthetic color multi-fractal image.

V. EXPERIMENTAL RESULTS

In this section we present the results of the presented
multi-resolution active contour approach using our pro-
posed color diffusion model for several medical images of
melanoma. Figures 6 and 7 illustrate the results obtained for
a melanoma image when using two types of initialization.

(a) initial contour (b) intermediate (c) final contour

(d) initial contour (e) intermediate (f) final contour

(g) 7× 7 (h) 21× 21 (i) 75× 75

Fig. 6. The initial, intermediate and final active contours (two first rows),
as well as the diffusions at various sales (bottom row).

(a) initial contour (b) intermediate (c) final contour

(d) initial contour (e) intermediate (f) final contour

(g) 7× 7 (h) 25× 25 (i) 75× 75

Fig. 7. The initial, intermediate and final active contours (two first rows),
as well as the diffusions at various sales (bottom row).

When dealing with this type of color medical images of
skin lesions, from our experiments we conclude that it is
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better to place the initial contour outside the skin lesion area,
because if placed inside the lesion area it may be attracted
by various strong inner edges leading to an unsatisfactory
result. Further results are presented in Figure 8.

(a) initial contour (b) intermediate (c) final contour

Fig. 8. The initial, intermediate and final active contours.

As expected, for an active contour approach the result
of segmentation strongly depends on initialization of the
contour - how far is it from the object of interest and what’s
its shape. Figure 9 shows an unsatisfactory result for the
final position of the active contour when some of the points
remained close to their initial position. The cause is the
brownish/reddish area in the right of the lesion of interest,
represented in the diffusion images as well (Figure 7), which
attracts the active contour at a certain iteration. The active
contour moves according to a Greedy algorithm which may
get stuck in local extrema, so the brownish/reddish area keeps
the active contour locked in that position, despite the fact that
the border we want to detect is more visible.

(a) initial contour (b) intermediate (c) final contour

Fig. 9. The initial, intermediate and final active contours for an unsatis-
factory segmentation result.

VI. CONCLUSIONS

We propose a diffusion model for color images to be
used as external energy for active contours. It is based on
the first-order moment of the correlation integral expressed
using the CIE Lab ∆E distance between pixel colors. The
active contour framework that we used is a multi-resolution
approach based on the mean ∆E value computed locally,
in windows of various sizes, capable to drive the active
contour to the edges of the object to be segmented in a color
image. We validated the model on synthetic multi-fractal
color texture images, as well as natural textured images
representing melanoma and psoriasis skin lesions. The active
contour framework was implemented in MATLAB, but for
a reasonably-fast implementation of the proposed diffusion
model we preferred a parallel implementation on GPUs [21].
The measured time performance improvement showed an

acceleration factor of 200×, leading to a total running time
of approximately one minute for an image of 400 × 400
pixels. We conclude that our approach could be used in a
clinical screening application as preprocessing for melanoma
ABCDE evaluation or psoriasis PASI score computation.
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