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Abstract— Dendritic spines are membranous protrusions
from neuron’s dendrites. They play a very important role in the
nervous system. They are very small and have various shapes;
hence it is very challenging to detect them in neuron images.
This paper presents a novel method for detecting dendritc
spines in 2D images. A new dendrite backbone or centerline
extraction method is introduced herein which is based on
an iterative process between smoothing and extraction. The
proposed method iteratively refines the extraction result using
both directional morphological filtering and improved Hessian
filtering until a satisfactory extraction result is obtained. A
shortest path method is applied along a backbone to extract
the boundary of the dendrites. Spines are then segmented from
the dendrites outside the extracted boundary. The proposed
algorithm has been tested with many images and good results
are achieved.

I. INTRODUCTION

Dendritic spines are small protrusions from neuron’s den-
drites. Typically, spines have a large spine head, which
connects to the dendrites via a membranous neck. The
most notable classes of spine shapes are ‘thin’, ‘stubby’,
‘mushroom’, and ‘branched’. A number of human diseases
such as Schizophrenia and mental retardation are relevant
to alterations of spine’s morphology or density [1], [2].
Analyzing spines is helpful for developing drugs to treat or
slow down these diseases. Automatic detection of spines in
2D images is very important, because it can help release
biologists from the heavy burden of manual spines detection
process.

There are some researches on automatic detection of
spines. Herzog et al. use a parametric model to analyze the
morphology of the dendrites and spines [3]. But this method
needs to add the spines neck manually if they are too thin.
Koh et al. detect spines based on their morphology [4]; Xu
et al. detect spines through two grassfire procedures [5];
Rodriguez et al. use adaptive local thresholding, voxel clus-
tering and Rayburst sampling to analyze spines [6]. However,
these methods are based on segmentation methods using
thresholding, so the results are sensitive to the threshold se-
lection. Cheng et al. apply adaptive thresholding, SNR based
method and morphology analysis to separate spines [7]. They
may not have a smooth backbone result by just using the
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thinning algorithm as spines in the binary image will affect
the detection result. Janoos et al. reconstruct spines using
surface representation and extract skeletons based on the
medial geodesic function [8]. Large spines are easy to be
lost and spines shape are not well presented in this method.

Here we develop a new backbone extraction approach and
apply a shortest path method to detect dendrite boundaries
and isolate dendritic spines. A backbone is the centerline
of the dendrite structure. The novelty of our backbone
extraction approach is that it uses an iterative process which
can smooth the dendrites and refine the backbone extraction
results. The backbone extraction of the dendrites is a key step
for spines detection as it is the place where spines attach to.
However, backbone extraction is always affected by the huge
number of small spines. Besides, normal thinning algorithm
is usually conducted on the binary images, which depend
heavily on the thresholding algorithm. A simple thresholding
algorithm may make a backbone disconnected. Our backbone
extraction approach can iteratively remove the small spines
from the dendrites, making the backbone extraction result
better and re-connect the broken parts on the backbone.
Convincing results are obtained using our method. We will
describe our method in Section II and Section III, and show
experimental results in Section IV.

II. DENDRITES BACKBONE EXTRACTION

To improve the extraction results, we first use a median
filter to reduce noise. The filtered image is denoted by
IM . Then to deal with spines which are too close to each
other, which often become connected after operations such
as the Hessian filter, we compute the gradient of the image,
normalize the gradient magnitude to the range from 0 to
255, and use the difference between the image intensity and
normalized gradient value to build a new image, denoted by
Il.

Frangi et al. present a multi-scale approach for the linear
feature enhancement which is based on the eigenvalues of
the Hessian matrix [9]. Assuming the two eigenvalues of
the Hessian matrix are λ1 and λ2 and they are ordered as
|λ1| ≤ |λ2|. The following is used as a filter to enhance the
linear feature:

H(s) =

{
0 if λ2 > 0,

exp(−Rβ
2

2β2 )(1− exp(− S2

2c2 )) else.
(1)

where Rβ = |λ1| / |λ2|, which is a blobness measure, S =√∑
j≤2

λ2j , and β and c are constants set manually.
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However, the blob-like structures in dendritic spine images
are suppressed too much if using this filter directly. The
junctions where three or more dendrites meet, as well as
extremely thick dendrites are sometimes suppressed, making
these places hollow in the center. So we do not consider the
blobness part of the filter. Using this improved filter, noise
in Il will be greatly reduced, and linear features will be
enhanced, especially for the thin linear features.

To obtain a smooth and clean backbone, it is necessary to
initially remove the spines along the dendrites. We use an
attribute opening [10] operation on an inverted image and
invert it back and use the attribute opening again to reduce
the interference of small holes and small spines. Now we
have obtained a much cleaner image with minimum noise,
we can use thresholding to obtain a binary image. We use a
thinning algorithm to obtain the skeleton and remove small
branches of spines to trim the skeleton. Finally, we obtain
the initial dendrite backbone. This is the start of our new
backbone extraction method. Although there may be some
small missing or broken parts on the backbone, this would
not affect the final result.

From this initial backbone, we use an iterative process to
refine the backbone extraction. Starting with the backbone
extracted in the previous iteration, the operations we will
discuss below will be repeated until a satisfactory backbone
extraction result is obtained. First, all pixels on the initial
backbone are traversed. At each pixel, its orientation using
its neighbouring pixels is calculated. Then according to the
local orientation of pixels along the backbone, smoothing
based on directional morphological filtering [11] is applied
to the dendrites. For each pixel p in the binary image which
is used in the thinning algorithm, its closest backbone pixel’s
orientation is used as p’s orientation. A discrete line is
generated by a Bresenham line [12] in the center of p with p’s
orientation. Then p’s intensity is replaced with the minimum
value along this discrete line. This erosion operation along
the main backbone direction will remove the attached spines
which will affect the backbone extraction result. This makes
the dendrites smoother. An improved Hessian filter is used
on the eroded image. Then the backbone is extracted again
using thinning and trimming.

However, some spines may be very close to each other, and
they may become connected after the Hessian operation. Af-
ter the above operations, they may appear as one backbone.
Further operation is needed to disconnect this short back-
bone. The original image intensity along each line segment
of the backbone is checked. The nearly touching spines have
a gap between them, so there may be a sharp intensity change
at this gap (Fig. 1). However, some dendrite regions may
also have a similar intensity profile. The spines and dendrites
which have similar intensity profile are differentiated using
their shape information. The edges detected by a Canny edge
detector [13] are different at these two different situations.
The spines that are close to each other have two curves
along the short backbone while the dendrite structure just
has one linear structure (Fig. 2). The backbone will cross
two edges when the two spines are close to each other but

will not cross any edge for the dendrites. The backbone is
disconnected if it has sharp intensity changes and crosses
two edges. Through trimming, these disconnected backbone
will be removed. After these operations, a backbone which
is much better than the previously extracted one is obtained.
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Fig. 1: The two spines which are close to each other. The
green line is the backbone initially extracted and will be
removed. The curve on the right represents the intensity
profile along the green line.

Fig. 2: Canny edges for spines and dendrites: the left is the
Canny edges for the spines which are close to each other; the
right is the edges for a dendrite which also has an intensity
reduction along the structure.

Using the currently obtained backbone, these operations
will be repeated: directional morphological filtering, im-
proved Hessian filter, thinning, and trimming to obtain
a better backbone extraction result. In each iteration, the
backbone result is improved, so for the next iteration’s
morphological filtering, the dendrites becomes smoother. If
one part of the backbone is lost in the initial extraction result,
the morphological filtering and the improved Hessian filter
will not be carried out on this part, and the intensities of this
region will keep the intensities of the original image. Then
this lost part will be detected in the backbone extraction
iteration afterwards. Besides, this method will remove the
wrongly detected backbones for spines which are too close
to each other. The iterative process can be conducted until
the backbone extraction result becomes stable. The iteration
number can be set manually. In our experiment, two or three
iterations are enough. We show the morphological filtering
results in Fig. 3. The backbone extraction comparisons be-
tween the initial backbones and the results after our iterative
backbone extraction are shown in Fig. 4. From these images,
we can see that the backbones are smoother and lie in
the center of the dendrites. Based on the finally extracted
backbone, we use the directional line erosion again to obtain
smooth dendrites, which will be used in the next step. We
denote the smooth dendrites finally obtained with Ie.

III. BOUNDARY EXTRACTION AND SPINES
DETECTION

In this step, we aim to extract the dendrite boundary and
isolate the spines using the obtained boundary.

After the directional line erosion, most of the spines
attached to the dendrites are removed from the dendrites.
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Fig. 3: Two examples showing the outputs after applying
directional morphological filter.

Fig. 4: Backbone extraction results and comparisons: The left
column shows the initial backbone results, and the middle
column shows the results after iterations. It can be seen that
the iterated results are much smoother. The right column
shows the final backbone extraction results overlaid on the
original image.

Some spines may not be removed because the base of the
spines is too wide. Besides, some dendrites may be eroded
too much, making a small concave curve on the boundary.
The dendrite boundary should be continuous and without
those convex or concave regions. Therefore a shortest path
approach is used here.

Gradient value is a good indicator for a boundary as the
boundary is the place where bright and dark signals meet.
We compute the gradient value of the eroded image Ie. In the
gradient image, we take local regions along the orientation
of the backbone to obtain the dendrite boundary. By doing
so, the boundary extraction will only be carried out on pixels
with dendrites and spines. To increase efficiency, we rotate
the local region so that the backbone is roughly vertical.
Next, we employ a shortest path boundary extraction method
on one side of the backbone. Large bumps and concave
regions will not be detected, but will be detected as a smooth
boundary. Then we write the result back to the original image
and obtain an image with dendrite boundary. We use the
same method to obtain the boundary on the other side of
the backbone. The examples for boundary extraction can be
seen in Fig. 5.

After we have obtained the dendrite boundary, we smooth
the boundary, check and connect broken parts. We set the

Fig. 5: Two examples of boundary extraction.

boundary value to zero, then the spines in the original images
are isolated from the dendrites. As the spines are now all
isolated, we can use the attribute opening again to detect the
spines.

Algorithmic Procedure:
1) Preprocess the image to reduce noise.
2) Extract dendrites backbone:

a) Apply Hessian filter and open-by-attribute oper-
ation.

b) Extract the initial backbone using thinning and
trimming algorithm.

c) Use the iterative backbone extraction approach to
obtain backbone.

d) According to the final backbone result, smooth
the dendrites again using directional morphologi-
cal filter. The output will be used in the boundary
extraction step.

3) Boundary extraction and spine detection:
a) Subset and rotate small regions of the gradient

images along the orientation of the backbone.
b) Apply shortest path to detect the boundary of the

dendrites.
c) Obtain the boundary and isolate the spines from

the dendrites.

IV. EXPERIMENTAL RESULTS

We tested our approach on real neuron images. We se-
lected two examples from all the testing images and we show
them in Fig. 6, Fig. 7. The detected spines are marked with
red color. These images have complicated spines structures,
and our method shows good detection results. Fig. 6 shows
two subimages of the left image in Fig. 7. It can be seen that
tiny spines can also be detected. Besides, there are no false
positive spines detected on the thin dendrites which have no
spines on it. From Fig. 7, we can see that the spines which
are close to each other can also be detected. We ran our
algorithm on a PC with an Intel Core i5 2.66GHz processor
and 4GB RAM. It took about 95s to process the 1024×1024
image shown in Fig. 7. The parameters for our method can be
empirically determined. For example, the attribute opening
parameter can be decided by observing the largest blob or
isolated spines.

Spine length, spine density or spine area can be estimated
from the detected spines. For each spine, we measured its
length using the Euclidean distance from dendrite boundary
to the spine’s farthest pixel from dendrites. The spines length
distribution histogram can be seen in Fig. 8. From the graph,
we can see that the spines have lengths between 0 to 31
pixels, and the spines’ lengths have a larger distribution

5345



between 0 to 10 pixels. The comparison between manual
visual detection and our method is shown in Table I. The
statistics shows that our algorithm achieves a good result.
The dendritic spine images have hundreds of spines, hence
it will take a long time if bioscientists detect them manually.
Our automatic spine detection approach will save time and
labor for bioscientists.

TABLE I: Measurements of Dendrites and Spines
Dendrite Average spine Spine density

length (pixel) length (pixel) (pixel−1)
Manual 14343.16 10.23 0.0372
Our method 16580.73 9.12 0.0346

Fig. 6: Two subimages showing dendritic spines detection
results.

Fig. 7: Spines detection result: the red spots are the detected
spines.
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Fig. 8: Spine length distribution.

V. CONCLUSIONS

In this paper, we present a new approach which can be
applied for dendritic spines detection. A novel approach for
backbone extraction is proposed which iteratively refines the
backbone extraction until a satisfactory result is obtained.
It can give a smooth backbone extraction result, repair the
broken parts in the backbone extraction process and also
provide an isolation boundary for the spines detection. There

are three main steps in our whole spines detection method:
the first is to extract the dendrites backbone, the second
is to detect the dendrite boundary, and the third step is to
detect the spines. The method provides much information for
researchers to analyze the spines, for example, the length, the
density or the area. We will further our study in classifying
the shapes of spines.
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