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Abstract— Transmission electron microscopy images of beta
islet cells contain many complex structures, making it difficult
to accurately segment insulin granule cores. Quantification of
sub cellular structures will allow biologists to better understand
cellular mechanics. Two novel, level set active contour models
are presented in this paper. The first utilizes a shape regularizer
to reduce oversegmentation. The second contribution is a dual
active contour, which achieves accurate core segmentations.
The segmentation algorithm proceeds through three stages: an
initial rough segmentation using the first contribution, cleaning
using morphological techniques and a refining step using the
proposed dual active contour. Our method is validated on a set
of manually defined ground truths.

I. INTRODUCTION

As microscopes become more sophisticated and are able
to achieve better resolutions, researchers are able to ob-
serve cellular processes in more detail. With the increased
viewing power, new image processing algorithms need to
be developed in order to extract as much information from
the images as possible. Currently, scientists resort to slow,
manual analysis to extract and analyze information from
images. Image informatics has become the rate-limiting
factor in realizing the full potential of dynamic cellular and
molecular imaging studies [1]. Insulin is the only hormone
in mammals able to lower blood glucose levels and subse-
quently it is vital for life. Disbalance of insulin levels may
result in diabetes. Typically insulin granules are described as
organelles containing a dense core, surrounded by a halo and
an enclosing membrane, but this is very much dependent on
the fixation procedure.

In this work, transmission electron microscopy (TEM) im-
ages of rat beta islet cells have been acquired to examine the
physical dimensions of their insulin granule cores. Normally
biologists use open source software, such as Fiji, MetaMorph
or Cell Profiler to perform image processing tasks. Fiji
includes many thresholding methods, for example Otsu’s [2].
Recently a method was developed to analyze insulin granules
in TEM images [3]. It was developed for a specific (expen-
sive) software package; Definiens. The method described in
this paper has a lower miss rate than that of the method
used in [3]-17%. A number of approaches for microscopy
cell segmentation have been previously described. Methods
based on watershed transforms [4], multiscale products [5],
and the sliding band filter [6] have been proposed. All these
approaches do not address the specific challenges presented.
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We propose a segmentation algorithm which utilizes the
level set active contour model, for granule core segmentation
of beta islet cell TEM images. Two novel active contour
segmentation energy functionals are presented and employed
in granule core segmentation. The first proposed level set
method includes a novel shape regularizer, to prevent over-
segmentation. The second novel contribution is a dual level
set active contour based on the energy functional presented
in [7]. The core detection algorithm is presented in three
steps: a rough segmentation using the first novel contribution,
cleaning using morphological operations and an accurate
final segmentation using the second novel contribution. Fig.
1 shows a flow chart which outlines the key processes. Once
the cores are segmented obtaining their area is trivial. The
reminder of the paper is described as follows, Section II
describes our level set regularizing term and our dual level
set method. Section III presents our algorithm for granule
core segmentation. We validate our approach in Section IV
and conclude in Section V.

II. THEORETICAL PRELIMINARIES
A. Region Based Fitting Energies

Active contours are a method often used in image segmen-
tation [8]. They were first proposed in [9]. The idea in active
contour segmentation models is to evolve a curve subject to
constraints from a given image, in order to detect objects in
that image.

Chan and Vese proposed a region based energy functional
for segmentation, using a level set framework [10]. The
Chan-Vese model is unable to correctly segment images
with intensity inhomogeneity. A method proposed by Li,
et al. is able to deal with inhomogeneity [7]. The method
uses a scalable kernel. The kernel K must be nonnegative,
K : <n → [0,+∞). Given points u and v the kernel should
also have the following properties:

1. K(−u) = K(u);
2. K(u) ≥ K(v), if |u| < |v| , and lim|u|→∞K(u) = 0;
3.
´
K(x)dx = 1.

In the level set method [11], a contour C is taken as
the zero level set of a level set function. Level set values
inside the contour are taken as negative and values outside
the contour are taken as positive. Given a level set function
φ and an image I , the local fitting energy for that image is
defined as,
εrs(φ, f1, f2) =
2∑
i=1

λi

ˆ
(

ˆ
K(x− y) |I(y)− fi(x)|2Mi(φ(y))dy)dx. (1)
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We define, M1(φ) = H(φ) and M2(φ) = 1−H(φ), where
H is the Heaviside function. λ1 and λ2 are two positive
constants used to favor segmentations outside and inside the
contour respectively, and f1(x) and f2(x) are two values
that approximate image intensities outside and inside C
respectively around x. I(y) are image intensities located in
the region around x, which are determined by the size of the
kernel. In this experiment a Gaussian kernel is used,

Kσ(u) =
1

(2π)n/2σn
e−|u|

2/2σ2

, (2)

where σ is the standard deviation. The term K(x − y) is
a weight term assigned to each point y. Due to the second
property of the kernel, the contribution of intensities I(y)
to the fitting energy decrease and approach zero as the
point y moves farther away from point x. The Gaussian
kernel Kσ(x − y) is effectively zero when |x− y| > 3σ.
The fitting energy εrs is a weighted mean square error of
the approximation of the image intensities I(y) outside and
inside the contour C by the fitting values f1(x) and f2(x)
respectively, for all points.

B. Internal Energy with Shape Regularization

A localized region based active contour segmentation is
applicable to our images because of the inhomogeneity
between granules and in some cases within the cytoplasm.
There is a lot of fine detail within the cytoplasm which
present unwanted information. A new internal energy term
is proposed, which is aimed at reducing oversegmentation
of insulin granules in TEM images of beta islet cells. The
following energy term is proposed:

εin =
l

a
, (3)

where l is the contours length and a is the contours area.
We utilize the fitting energy presented in [7], hence the new
energy functional is defined as, ε = εrs + εin where εrs
is the energy functional presented in (1). Given a level set
function φ, the energy ε can be written as:
ε(φ, f1, f2) = εrs(φ, f1, f2) + ν

ˆ
|∇H(φ(x))| dx

+µ

ˆ
1

2
(|∇φ| − 1)2dx

+υ

´
|∇H(φ(x))| dx´
H(φ(x))dx

. (4)

Where υ, ν and µ are weighting parameters.
ν
´
|∇H(φ(x))| dx is a term to keep the contour smooth

[10]. The final term is the proposed energy term in (3),
presented in a level set framework. In practice, the Heaviside
function is approximated by a smooth function Hε defined
as:

Hε(x) =
1

2
[1 +

2

π
arctan(

x

ε
)], (5)

and its derivative δε as:

δε(x) =
1

π

ε

ε2 + x2
. (6)

where ε is a constant. We can define, M ε
1(φ) = Hε(φ) and

M ε
2(φ) = 1 − Hε(φ). For a given level set function φ and

Fig. 1. Granule core detection algorithm using section of TEM image
200× 200 pixels.

image I , the energy term ε(φ, f1, f2) can be minimized with
respect to f1 and f2 through calculus of variations. The
following is obtained:

fi(x) =
Kσ(x) ∗ [M ε

i (φ(x))I(x)]

Kσ(x) ∗M ε
i (φ(x))

, i = 1, 2. (7)

The functions f1(x) and f2(x) are weighted averages of
values in I(x) whose size is determined by σ.

The regularity of the level set function is important for a
stable evolution of the level set function as well as accurate
computations [12]. In (4) the third term forces the level set
to keep a signed distance function. In [12] the regularization
term,

´
1
2 (|∇φ| − 1)2dx was proposed. The term is based

on a property of the signed distance function, |∇φ| = 1.
This will force the level set function to keep signed distance
properties as it evolves.

Keeping f1(x) and f2(x) fixed ε can be minimized with
respect to φ(x) using the standard gradient decent method,
by solving the following gradient flow equation:

∂φ

∂t
= −δε(φ)(λ1e1 − λ2e2) + νδε(φ)div(

∇φ
|∇φ|

)

+µ(∇2φ− div( ∇φ
|∇φ|

))

+υ
a(δε(φ)div(

∇φ
|∇φ| )) + l(δε(φ))

a2
. (8)

Where e1 and e2 are:

ei(x) =

ˆ
Kσ(y − x) |I(x)− fi(y)|2 dy, i = 1, 2. (9)

In the evolution equation the first term is called the data
fitting term and is responsible for driving the active contour
to the image boundaries. The second term is the length
term used for smoothing and the third term is the level set
regularization term. The final term is the proposed shape
regularizer.

The presented energy functional will reward granule seg-
mentation and penalize cytoplasm segmentation. This is so
because it will push the contour to segment structures with
larger, area to perimeter ratios. In the case of granule cores
in the beta islet TEM images, this is always the case.

C. Dual Region-Scalable Active Contour

During the evolution of a curve, it is quite likely that the
curve will pick up undesired objects, and also be trapped in
local minima in the image. The dual active contour method
uses two active contours, which interact with each other,
in order to avoid these short comings. The dual geometric
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active contour method presented in [13] utilizes the Chan-
Vese active contour. The proposed active contour consists of
two contours initialized simultaneously inside and outside
the object boundary. In order to deal with inhomogeneous
images the energy function in (1) is incorporated into a dual
framework. The following energy functional is proposed:

εdrs(φ, ψ) = εrs2(φ) + εrs2(ψ) +

+τ

ˆ
[Hε(φ)−Hε(ψ)]

2dx. (10)

Where φ and ψ are two level sets, each representing contours
initialized inside and outside the object to be segmented
respectively. The energy functionals εrs2(φ) and εrs2(ψ) are
the fitting energies shown in (1) —along with the smoothing
term and signed distance regularizer— for level sets φ and ψ
respectively. τ is a weight for the interaction term. εdrs(φ, ψ)
is minimized by the gradient decent method with respect to φ
and ψ, by the solving following the gradient flow equations:

∂φ

∂t
= −δε(φ)(λ1u1 − λ2u2) + νδε(φ)div(

∇φ
|∇φ|

)

+µ(∇2φ− div( ∇φ
|∇φ|

))

−2τδε(φ)[Hε(φ)−Hε(ψ)], (11)

∂ψ

∂t
= −δε(ψ)(λ1v1 − λ2v2) + νδε(ψ)div(

∇ψ
|∇ψ|

)

+µ(∇2ψ − div( ∇ψ
|∇ψ|

))

−2τδε(ψ)[Hε(ψ)−Hε(φ)]. (12)

Where u1, u2 and v1, v2 are e1, e2 —as stated in (9)— for
the level sets φ and ψ respectively. The first three terms in
each update equation are similar to those defined in Section
II-B and the fourth term in each equation is the force which
causes the two contours to coincide. Each level set is evolved
based on their respective gradient flow equations. The final
result is reached when evolution of the level set curves has
converged.

III. GRANULE CORE SEGMENTATION

The input for this fully automated algorithm is a beta islet
cell TEM image. The proposed region based active contour
discussed in Section II-B is applied on the image, as the
first step. In order to initialize the active contour a mask is
obtained from the image I(x, y). Given the distribution of
intensities in I as D(i), 0 ≤ i ≤ 255, D(j) the maximum
value in D(i) and the cumulative distribution of intensities
as CD(i), the mask, Y is calculated as follows:

avg = mean(CD(h)), 0 ≤ h ≤ j, (13)

CD(b) = avg, Y = I ≤ b. (14)

Although applying the active contour in (8) on the TEM beta
cell image segments the granule cores, other organelles and
grains in the cytoplasm are also segmented. In the second
step morphological opening is then applied to the result of
the image after active contour segmentation. The opening
procedure, along with removing most of the cytoplasm, will

Fig. 2. Columns 1 and 2 compare the region scalable active contour without
shape regularizer [7], and with shape regularizer (8), middle row and last
row respectively. Column 3 demonstrates the use of the dual active contour
in Section II-C. The middle row shows a distorted core after the cleaning
step. This distortion is corrected by the dual active contour as seen in the
third row. Column 4 shows a granule core, dual contour initializations and
the final segmentation, from top to bottom respectively.

also remove other organelles. Objects which are too small
are removed as well as objects which are not round enough.
The metric used to define roundness is,

m = 4π
area

perimeter2
, m > 0. (15)

A perfect circle will have a value of 1 and the less circular
the shape the smaller the value. Objects with a roundness
less than 0.5 are removed. Some images have granule cores
with a lighter center and dark borders. These images are
also particularly grainy, even within the granules. In order to
remove other organelles in the cytoplasm, as well as fill any
granules with a light center, morphological closing is applied,
along with image negation. Images which need this extra
processing step tend to have a grainy structure. Therefore,
in order to decide whether the extra step should be taken,
the number of connected components in an image is counted
right after applying the active contour in (8) is applied.

In order to capture small dense (dark) granules, that may
be missed, I(x, y) is thresholded to highlight values with an
intensity less than 55. Connected components in this thresh-
olded image with a roundness less than 0.5 are removed.
The result of the previous steps will have a good estimate
of the location and shape of the granule cores, however
this result may be distorted because of the morphological
operations. As a third step in order to accurately segment
each granule core the dual region scalable active contour
— as described in Section II-C— is applied to each core.
Morphological erosion and dilation on each core template
are used to obtain initializations for the dual active contour
inside and outside the core respectively. To get a complete
set of dimensions for an insulin granule, the granule halo
area needs to be measured. We present a novel method for
granule halo segmentation of beta islet cell TEM images in
[14].
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Fig. 3. Granule core radii distributions for a TEM image of a chemically
fixed beta islet cell. The horizontal axis is the radii bins in µm, while the
vertical axis is frequency.

IV. RESULTS

Our algorithm is initially applied to five images, two fixed
chemically and three fixed using high pressure fixation. Each
image is 5000 × 5000 pixels. This number of images gives
about 1300 granules to be processed. Fig. 2 demonstrates the
effectiveness of our novel active contour models. In step 1
for all images ν = 0.003×255×255, µ = 1, λ1 = 1, λ2 = 1,
σ = 7, ε = 1, 4t = 0.1 and υ = 15.38×255×255. A small
scale size is chosen because greater detail is picked up. For
the dual active contour, µ, λ1, λ2, σ, ε and4t are the same as
step 1, while ν = 0.005×255×255 and τ = 2.5×255×255.
For all morphological operations a disk shaped structuring
element is used.

As a final step the same images are also manually analyzed
and the results compared with the automated analysis. A core
detection rate of 97.12% was observed. Of the total number
of cores detected automatically, 12.3% were misses and 9.9%
were false positives. The number of insulin granules in beta
islet cells is already known to be about 6000 [3]. Ultimately
statistics on granule sizes are needed for analysis. In order
to check the effectiveness of our algorithm we compared
the average granule core areas, with those done manually.
The metric used to record granule sizes is a radius of a
circle with the same area as the granule core. Fig. 3 shows
the distributions of granule core areas, from a single TEM
beta islet cell image. The average granule core radii error
is 8.22% for all images. Table. I summarizes our results on
radii distributions for cores, on all five images.

V. CONCLUSION

In this paper we present an automatic segmentation ap-
proach for insulin granule cores in TEM images of beta
islet cells. In our core segmentation algorithm we present
two novel active contour models. The first is a localized
region based energy with a shape regularizer to help re-
duce oversegmentation in the TEM images. The second
contribution is a localized region based dual active contour,
which is able overcome inaccurate segmentations due to
image inhomogeneity. Core segmentation is separated into
three steps: pre-segmentation, morphological cleaning and an

TABLE I
M = MEAN, SD = STANDARD DEVIATION, CF = CHEMICALLY FIXED,

HPF = HIGH PRESSURE FIXATION.

Proposed Algorithm Ground Truth
M (µm) SD(µm) M (µm) SD(µm)

CF 1 0.20884 0.05860 0.19843 0.05847
HPF 1 0.23768 0.04872 0.24254 0.04965
CF 2 0.17431 0.03892 0.15214 0.04085

HPF 2 0.15166 0.04705 0.18203 0.05166
HPF 3 0.20254 0.04759 0.21258 0.06141

accurate final segmentation. The method gives a detection
rate of 97.12%. In order to check the accuracy of our
segmentations, the resulting granule areas are compared to a
manually obtained ground truth. An average area difference
of 8.22% between the automated results and the ground truth
is observed. Having an automated approach for microscopy
segmentation can help biologists get quantitative information
faster, it also removes human error from the process as well
as makes it completely reproducible.
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