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Abstract— In this study we developed a technique to improve
the identification of carcinoma and pathological lymph nodes
in cases of Nasopharingeal Carcinoma (NPC), through a quan-
titative characterization of the tissues based on MR images:
3D VIBE (Volumetric Interpolated Breath-hold Examination)
T1-CE (Contrast Enhanced), T1, T2 and Diffusion Weighted
Imaging (DWI) for b-values 0,300,500,700,1000. The procedure
included two phases: 1) coregistration of volumes and 2) tissue
characterization.
Concerning the first phase, the DICOM images were reassem-
bled spatially and resampled with isotropic 0.5mm resolution.
Coregistration was performed by two multiresolution rigid
transformations, merging head and neck volumes, plus a final
multiresolution non rigid transformation. The anatomical 3D
CE-VIBE volume was taken as reference.
The procedure for tissue characterization is semi automated and
it required a radiologist to identify an example of tissue from
the primary tumor and a metastatic lymph node. We generated
a 8-dimensional membership function to perform a fuzzy-like
identification of these tissues. The result of this procedure was
the generation of two maps, which showed complementary
characterization of lymph nodes and carcinoma. A few example
will be shown to evidence the potentiality of this method in
identification and characterization of NPC lesions.

I. INTRODUCTION

The Nasopharingeal Carcinoma (NPC) is a malignant
entity that usually develops in the Rosenmueller fossa or
on the roof of the nasopharynx. As with other cancers,
the prognosis depends upon tumour size and infiltration of
adjacent structures, lymph node involvement, and distant
metastasis. To obtain NPC TNM stage evaluation PET-CT
images are usually employed [1], giving informations on
tissues characterized by high metabolism. In addition an MR
examination is necessary to correctly identify the precise
local invasion of surrounding anatomy: soft tissues, fasciae,
vascular and fatty spaces [2]. Recently Diffusion Weighted
MRI (DW-MRI or simply DWI) [3], has been suggested as
a potential technique for NPC characterization [4][5]. High
radiolabeled glucose uptake in PET identifies zones with
higher metabolism, while DWI water diffusion can be related
to the histology and cellular density of tissues [6]. This holds
true for NPC primary tumor and metastatic lymph nodes,
making of DWI a useful tool to identify such tissues [4][5].
Since experienced radiologists are able to identify patholog-
ical tissues from a MR image set, composed by 3D VIBE
(Volumetric Interpolated Breath-hold Examination) T1-CE
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(Contrast Enhanced), T1, T2 and DWI, in this study we
developed a semi-automated method for NPC pathological
tissues detection and characterization based on the same set
of images.
A few approaches have been already proposed to identify
and segment the NPC lesion from MR images. In [7] a
knowledge-based fuzzy clustering (KBF) based was em-
ployed, while in [8] a support vector machine (SVM) was
used. In both the approaches, segmentation relies only on
T1 weighted (T1w) images acquired pre- and post-contrast
enhancement. A multi-image method (using T1w, T1w-CE
and also T2w) [9] performed the segmentation through a
bayesian probability estimator. In this study we consider
a larger set of MR images including DWIs which are
considered fundamental for the NPC characterization. We
do not aim at segmenting NPC tissues, but to generate maps
which quantify the similarity of each pixel with a reference
structure (lymph node or carcinoma).

II. METHODS

A. Patient Population

The study has been carried out on 15 patients affected
by NPC, 3 females and 12 males, aged between 14 and 60
at the moment of the MR examination. All of them were
examined with the standard MRI protocol which implies the
acquisition of these sequences:

- 3D CE-VIBE, from the skull-base to the clavicles.
This is a 3D fat-sat T1 Weighted Imaging (WI) with
Gadolinium contrast agent, isotropic 0.65mm resolu-
tion;TR=5.23ms,TE=2.05ms.

- T1 WI Turbo Spin Echo (TSE) for head and for neck
volumes acquired separately. These sequences are 2D
multi-slice axial acquisitions, with 4mm slice spacing,
0.65mm in-plane resolution; TR=572ms; TE=12ms.

- T2 WI TSE for maxillo-facial and for neck volumes
acquired separately. These sequences are 2D multi-slice
axial acquisitions, with 4mm slice spacing, 0.5mm in-
plane resolution; TR=3180ms; TE=109ms.

- DWI series, with b-values from 0 to 1000 (0, 300, 500,
700, 1000), acquired separately for head and for neck
volumes. These sequences are DW Echo-Planar Imag-
ing (EPI) 2D multi-slice axial acquisition, with 5mm
slice spacing, 2mm in-plane resolution; TR=5200ms;
TE=79ms.

Except for the 3D CE-VIBE, the other sequences were
acquired by axial slices and in two separate volumes, one
for the head and the other for the neck.

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

5331978-1-4577-1787-1/12/$26.00 ©2012 IEEE



B. Registration Method

As detailed above, the images were acquired with different
spatial resolution and cover different volumes. Therefore
the first task performed was the resampling of 2D slices,
imposing a sampling 3D mesh aligned with the patient
coordinates. The resolution chosen was 0.5mm isotropic,
obtained through a linear interpolation, so that the whole
image dataset had the same resolution.
These volumes were then co-registered, taking the anatom-
ical 3D CE-VIBE volume as reference. To this purpose we
used a three-step strategy:

1) multiresolution rigid registration [10] (coarse and fine
correction of differences in patient position);

2) head and neck volume merging;
3) multiresolution non rigid FFD transformation [11][12]

(correction of patient neck movements)
All registrations were based on Normalized Mutual Informa-
tion (NMI), computed on 32 bins, and conjugated gradient
descend optimization function [13]. In order to achieve the
best compromise between computation time and registration
detail, a hierarchical multiresolution approach has been im-
plemented, in which the resolution of the image is increased
in a coarse to fine fashion.
Step 1 - The rigid registrations were performed on two
scales. On the coarser scale registration was performed on the
reference volume filtered by a gaussian kernel (σ=2.5mm),
undersampled subsequently at 5mm and 2.5mm, while on
the finer scale on the non smoothed 3D CE-VIBE reference,
at resolution of 1mm and 0.5mm.
Step 2 - To merge the head and neck subvolumes, the mean
values of the overlapping voxels between the volumes was
computed. To avoid boundary effects, voxels belonging to
background (identified by a threshold) were ignored.
Step 3 - The third step was a non rigid registration, the
reference volume was filtered by a gaussian kernel(σ=3mm),
at resolution of 5mm and 3mm. This non rigid registration
provides a description of local deformation based on a free
form deformation (FFD) by employing B-splines [11][12].
The tradeoff between flexibility and computational complex-
ity is mainly an empirical choice which is determined by
the accuracy required versus the increasing in computation
time. Most of the image voxels are in the background, thus to
reduce calculation time we imposed a background threshold,
ignoring lowest values during NMI computation.
Finally we note that DWI volumes came already aligned at
different b-values thanks to their acquisition modality, thus
the realignment was performed between the reference and
the volume obtained with b-value=0. The resulting transform
was applied to all the DWI images. The overall process is
reassumed in the graph in Fig.1

C. Tissue characterization maps

Identification and characterization of tissues, have been
performed on the basis of references tissues (templates). Two
templates were considered, the first template was defined
with a customizable-size parallelepiped to be fully inscribed
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Fig. 1. Registration procedure scheme.

in the primary tumor tissue. The second template was defined
with 9-voxel (4.5mm) sided cubes fully inscribed in the
core region of pathological lymph nodes. These ROIs were
used to collect data from all the 8 fused images (3D CE-
VIBE, T1, T2 and 0,300,500,700,1000 b-values) and to
compute histograms from each modality. These histograms
(reference histograms) can be interpreted both as compo-
sition of template tissues and as probability of any other
voxel to represent the tissue of the template. A rigorous
statistic method would make use of Bayes theorem, but a 8-
dimensional approach is far too complex. Thus a fuzzy-like
method was developed, which uses 8 distinct membership
functions. Let’s hROI

j (k) be the number of voxels in the
j-th reference histogram whose intensity value is k, the
membership function is defined as:

Mj(Ij(x, y, z)) =
hROI
j (Ij(x, y, z))

maxk(hROI
j (k))

(1)

where Ij(x, y, z) is the intensity of voxel of coordinates
(x, y, z) in the image j. This function attributes the highest
membership values to voxel whose intensity is close to
the mode of hROI

j (k). Correspondingly lower membership
scores are given to voxel with intensity values which occur
less frequently in the ROI, while 0 is given to the intensities
which never occurred in the template. Having considered 8
different MR modalities, we computed the global member-
ship value between the pixel (x,y,z) and the template as:

P̂ (x, y, z) =

8∑
j=1

Mj(Ij(x, y, z)) ·
1000

8
(2)

whose resulting value is scaled between 0 and 1000. This
choice attributes an higher weight to DWI modalities (which
contributes to (2) with 5 out 8 elements in the sum) and it
is justified by the patophysiological and diagnostical impor-
tance of the diffusion dynamic in tissues characterization.
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The final map was obtained imposing a threshold value to
cut the lower, less significant values:

P (x, y, z) =

{
P̂ (x, y, z) P̂ (x, y, z) > th

0 otherwise
(3)

where th=250. As the tissues of interest were two, this
procedure was performed twice, obtaining an identification
map based on the lesion template while the other was based
on lymph nodes template.

III. RESULTS
A. Registration

At each step of registration (before alignment, after first
rigid transform, after the second rigid and after the non rigid
ones) Normalized Mutual Information (NMI) and Normal-
ized Cross Correlation (NCC) were computed to keep trace
of the performance of the alignment. Both these indexes were
evaluated on the image overlapping area described by a 250
voxel-sided cube located around the centre of the reference
image. NMI was computed using 128 bins (versus the 32
employed in registration) histograms and cross-histogram. As
it appears from the data shown (Fig.2), NMI describes a reg-
istration improvement, while NCC has a more variable trend.
The largest difference is the worsening of mean NCC in steps
3 and 4 for T1 and T2 volumes. This can be explained as
NMI and NCC rely on different principles: while NMI is
informational based, NCC is intensity based. The similarity
metrics show two major improvements related to the first
rigid registration (Step 1) and the final not rigid registration
(Step 3). The second rigid registration seems to be less
important as its alignment is finer and involves a smaller
part of the volume. The results were statistically evaluated

Fig. 2. Similarity metrics (mean values ± standard deviation) for raw
data (1), after first rigid transform (2), second rigid transform(3), and not
rigid transform (4). On the left column NCC, on the right one NMI, while
from top to bottom T1, T2 and DWI statistics. These data trends show the
improvement in alignment, considering that NCC performances are limited
in case of multimodal image registration

TABLE I
T-TEST RESULTS AND CORRESPONDING P-VALUES.

Reg. step P-value 1-2 2-3 3-4

NMI
T1 P<0.0001 P<0.0001 P<0.0001
T2 P<0.0001 P<0.0001 P<0.0001

DWI P<0.0001 P<0.0001 P<0.0001

NCC
T1 P<0.0001 NS P<0.0001
T2 NS P<0.0001 P<0.01

DWI P<0.0001 P<0.0001 P<0.0001

with a t-test. The population was composed by similarity
metrics computed before and after every registration step,
for every image. The null hypothesis (which is expected to
be refused) is that indexes at the (n+1)-th step and the n-th
step follow distributions with the same mean. In Tab. I we
summarize the t-test result, reporting the P-value. The test
rejected always the hypothesis, except of two steps of NCC
evaluation. This result can be explained by the registration
multimodality. In fact NMI is based on image information
content, hence its value increases with alignment, while NCC
relies on the image intensity, thus it assumes negative values
for aligned but counter-phase image pattern. This is a limit
especially for the evaluation multimodal registrations.

B. Tissue identification maps

The maps obtained at the end of the processing pro-
cedure showed a behaviour depending on the target tis-
sue. Furthermore the identified anatomical structures were
complementary: the map based on primary tumor template
detected the carcinoma itself with a good precision and
retrieved also the peripheral capsule of the lymph nodes,
while the lymph nodes based identification map retrieved
many lymph nodes cores and detected some regions of the
main carcinoma too. Hence a combined use of the maps
seems to provide a detailed characterization of lymph node
and NPC in the district. This can be enhanced by depicting
them as coloured layers over the anatomical volume (such as
in Fig.3 and Fig.4), which improves the comprehension of
the surrounding anatomical features. False positives in the
brain and in the spinal nerve can be easily recognized by
anatomy and thus ignored.

Fig. 3. Identification map rendered over the anatomical 3D CE-VIBE. This
was obtained from the lesion template, the primary tumor is appreciated in
the red box, a typical metastatic lymph node in the green one.

5333



IV. CONCLUSION

This study shows how a single MR examination composed
with different contrast images (T1,T2,3D CE-VIBE and
DWI) can collect various and different informations about
the pathological tissues of NPC. The technique proposed
introduces tissue characterization maps, which could be a
new tool in NPC tissue identification and/or evaluation, even
though these results are preliminary.
A further development will be the design of a segmentation
algorithm based on the maps scores. Since the choice of the
segmentation approach (threshold-based or more complex)
has an high impact on the overall result, only after this

Fig. 4. Identification map rendered over the anatomical 3D CE-VIBE. This
was obtained starting from the lymph nodes template, the primary tumor is
in the red box, a metastatic lymph node in the green one.

Fig. 5. 3D rendering of the anatomical 3D CE-VIBE, with a see-through
cut-off region, layered with the two maps. The lesion based map is rendered
in hot colors, while the lymph node based in cold.

improvement it will be possible to evaluate specificity and
sensitivity of the overall (maps and segmentation) method.
The maps can be used as an identification tool especially
where the structures of interest are tiny or their dimensions
are diminished by therapy.The advantages of this technique
are several: patients are not exposed to ionizing radiation,
the examination is a one-step procedure, MRI costs are much
lower than PET, the resolution of the resulting images is very
higher.
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