
  

 

Abstract— Cardiac CT is emerging as a preferable modality to 

detect myocardial stress/rest perfusion; however the insufficient 

contrast of myocardium on CT image makes its segmentation 

difficult. In this paper, we present a point-guided modeling and 

deformable model-based segmentation method. This method 

first builds a triangular surface model of myocardium through 

Bézier contour fitting based on a few points selected by 

clinicians. Then, a deformable model-based segmentation 

method is developed to refine the segmentation result. The 

experiments on 8 cases show the accuracy of the segmentation 

in terms of true positive volume fraction, false positive volume 

fractions, and average surface distance can reach 91.0%, 0.3%, 

and 0.6mm, respectively. The comparison between the proposed 

method and a graph cut-based method is performed. The results 

demonstrate that this method is effective in improving the 

accuracy further.   

I. INTRODUCTION 

Myocardium extracellular volume fraction (ECV) is highly 

associated with diffuse myocardial fibrosis, a hallmark of 

pathologic remodeling.  Compared to cardiac MRI, low dose 

cardiac CT provides a fast way to assess ECV; however the 

insufficient contrast of myocardium on CT image makes the 

myocardium segmentation the main barrier for its clinical 

use.  

Ecabert et al. presented a model-based approach for the 

whole heart segmentation [1]. First, pose misalignment is 

corrected by matching the model to the image using a global 

similarity transformation, and then the model is deformed to 

match the boundaries of the patient’s anatomy. In [2], Jolly 

provided a method to automatically extract the myocardium 

by first a global localization of the left ventricle and then a 

region based Expectation and Maximization segmentation. 

Chen et al. presented a hybrid method by integrating the 

shape prior information with the graph cut (GC) method [3]. 

A pseudo-3D strategy is applied for the initialization based 

on the live wire (LW) method, and then the shape 

information generated from the initialization step is 

integrated into a GC cost function.  

Shape constrains is valuable in improving the accuracy of the 

segmentation, especially in the region where no strong edges 

exist; however due to the large variation of the myocardial 

shape, aligning an established shape with the object is not a 

robust approach, which motivates us to develop a patient 

specific myocardial model based on sparse point set. Unlike 

the modeling method provided in [4], where an initial regular 
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Ellipsoid is fitted to the 3D guided-points by minimizing an 

error function consisting of the sum of a smoothing term and 

a point matching term, we present a Bézier contour [5,6] 

based modeling method. This method does not need to 

deform an initial model, therefore avoiding the deterioration 

of the element quality. The proposed method needs some 

points selected in the short axis slices in order to 

automatically build contours and construct surface from the 

contours. 

Along with this model, a deformable model-based 

segmentation method is developed. This method 

incorporates region information and shape constraints into 

one energy function. The initial model, provided by the 

proposed modeling method, will be driven by the energy 

function to match the myocardial boundary. 
 

II. METHOD 

A. Point-guided myocardium modeling 

Using a few points selected by clinicians to create a patient 

specific model is helpful in providing an initial estimation 

and imposing shape constraints for model-based 

segmentation.  

The basic idea to build the myocardium model is to use 

clinician specified points to create interlaced Bézier contours 

along both longitude and latitude directions. The intersection 

points of these Bézier contours are first connected to 

constitute quadrilateral and triangular elements, and then 

each quadrilateral element is further divided into two 

triangles to produce a triangular mesh. This procedure is 

performed on both endocardium (endo) and epicardium (epi) 

to produce endo and epi surface models, and then these two 

meshes are combined into one closed myocardial surface 

model. Fig. 1 shows the flowchart of this method, in which 

the left side and the right side create the endo surface and the 

epi surface, respectively.  

1) Both endo and epi surface meshes begin from a few points 

selected by a clinician. In addition to the apex, the other 

points are selected in the basal, middle, and apical short axis 

slices as suggested by American Heart Association (AHA) in 

standard myocardial segmentation [7].There is no stringent 

requirement for selecting the points within the slice.  

Roughly evenly spaced four points are acceptable as shown 

in the left image of Fig.2 if we do not consider the 

segmentation of papillary muscles. 

2) Next, a Bézier curve is fitted on each of the basal, middle 

and apical slices as shown in the right image of Fig. 2 (along 

with one apex point), for the following automatic myocardial 

modeling.  

Point-Guided Modeling and Segmentation of Myocardium for Low 

Dose Cardiac CT Images  

Yixun Liu, Marcelo Souto Nacif, Songtao Liu, Christopher T. Sibley, 

David A. Bluemke, Ronald M. Summers, and Jianhua Yao 

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

5327U.S. Government work not protected by U.S. copyright



  

3) Produce longitude Bézier contours. Each contour is 

resampled along the longitude direction. The number of 

reampled points is determined by the parameter: longitude 

resolution. These resampled points are used to produce 

longitude Bézier contours intersected at the apex as shown in 

the left image of Fig. 3. 

 

 
Figure 1. Flowchart of myocardial modeling. Left: endo modeling. Right: 

epi modeling.  

 

4) The longitude Bézier contours are resampled along the 

latitude direction with specified latitude resolution, and 

Bézier fitting is performed to produce latitude Bézier 

contours.  

5) The intersection points of the interlaced Bézier contours 

are connected to produce quadrilateral elements if there is no 

apex in four neighboring points, otherwise producing 

triangular elements. For each quadrilateral element, it is 

further divided into two connected triangles, leading to a 

triangular surface mesh as shown in the right image of Fig. 3. 

6) The above procedures are performed on both endo and epi 

to produce two triangular surface meshes as shown in the left 

image of Fig. 4. The vertices located in the basal planes of 

the two meshes are connected to produce the final closed 

myocardium surface model as shown in the right image of 

Fig. 4. The proposed modeling technique is robust and easy 

to be implemented because the basic operation involved in 

the modeling is Bézier curve fitting. The modeling approach 

uses Bézier curve fitting three times: Bézier contours in short 

axis slices, longitude and latitude Bézier contours. The 

resulting model will be used as the initial segmentation for 

the subsequent deformable model-based segmentation. 

 

  
Figure 2. Left: Four endo points are selected in the basal short axis slice. 

Right: Bézier contours and the apex used for the endo modeling. 

 

   
 

Figure 3. Left: Longitude Bézier contours. Right: Resulting endo 

model. 

 

     
 

Figure 4. Left: endo and epi surfaces. Right: Myocardial model by 

connecting the endo and epi surfaces at the bottom. 

 

B. Deformable model-based segmentation 

The myocardial model described above not only provides a 

good initial segmentation result, thus avoiding local minima, 

but also provides a shape constraint for the subsequent 

deformable model-based segmentation.  

The myocardium in the low dose CT image does not 

demonstrate strong edges with surrounding tissues, but 

shows strong Gaussian distribution. We develop an energy 

function by exploring the region information and imposing 

shape constraints. 

The energy function, which will drive the model evolution, is 

defined as, 
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where u  is the unknown deformation field. 
u

  is the  

region surrounded by surface 
u

 , which is the initial  

surface (Bézier model) deformed by u . L is a smoothing 

operator. I is the mean intensity of image I within
u

 . The 

first term measures the variation of the intensity in the 

region, the second term measures the smoothness of the 

deformation field, and the third term measures the volume of 

the region. When E   reaches the minimal, a region 

characterized by 1) grouping voxels with similar intensity, 2) 
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smoothly deviated from the initial model, and 3) including as 

many voxels as possible, will be found.  

The variation of the intensity and the tightness of the cluster 

are controlled by 
1

 and
2

 , respectively. To effectively find 

the numeric solution, equation (1) is approximated by 

representing the unknown region
u

 with the region, denoted 

by
DM

R , surrounded by a mesh 
D

M . The evolution of the 

mesh is restricted in the normal direction, i.e. for a vertex 

i
v , it only moves along its normal direction with a distance 

i
d . This approximation is able to maintain the mesh quality 

as evolving and significantly lower the pressure of optimizer 

since moving along the mesh surface does not contribute to 

minimizing the energy function, except increasing the 

pressure of optimizer.  D is the vector concatenated 

from
i

d . 
D

M  denotes the mesh evolving from the initial 

mesh 
0

M , produced by Bézier modeling, with a distance 

vector D . Smoothing operator L , is approximated by the 

degree of the relative movement  between the current vertex 

and its neighboring vertices. As a result, equation (1) is 

approximated by   
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where
DM

S is the surface of mesh 
D

M , 
v

N  is the 

neighboring set of vertex v , and
DM

R  is the number of 

voxels within mesh 
D

M . 
DM

R  can be calculated by 

voxelization, a rasterization technique. The equation (2) is 

solved by L-BFGS optimization, which is a gradient-based 

efficient method, especially suitable for high dimensional 

optimization problems [8]. 

 

 

III. RESULTS 

The proposed method was evaluated on 8 clinical low 
dose CT datasets, acquired from post-contrast phases of a 
320-MDCT scanner (Aquilion One, Toshiba Medical 
Systems, Tustin, CA). The slice thickness is 3 mm and in-
plane pixel size is 0.37×0.37 mm. The image size is 
512×512×47. We compare this method with GC 
segmentation developed in [3] and manually segmentation 
produced by an expert using our mesh edit tool.   

Fig. 5 shows the mesh evolution in 3D (left figure) and 
2D (right figure) spaces, from the initial green mesh, 
produced by our modeling method, to the final red mesh, 
produced by our deformable model-based segmentation. 

  

Figure 5. Evolved model and contours. Left: Initial model (green 
model) evolves to the final model (red model). Right: Initial contour 
evolves to the final contour in the short axis slice. 

Fig. 6 shows the segmented myocardium in the long axis 
slice (left figure) and the short axis slice (right figure) for 
two different cases. The green contour is the reference result, 
produced by an expert by manually adjusting myocardial 
surface. The red contour comes from the automatic 
segmentation method. 

  

Figure 6. Deformable model segmentation results. Red contour is the 
result produced by the proposed method, and the green contour is the 
reference contour. Left: the CT image of a 45 years old female. Right: the 
CT image of a 61 years old female. 

 

We compare our method with GC method and show the 
results in Fig. 7 and Fig. 8, respectively. The segmentation 
result is represented by a binary image and superimposed on 
the reference contour. Compared to the right figure (GC 
result), the result in the left figure (proposed method) is 
smoother and matches the boundary well. 

        

Figure 7. Comparison between the proposed method and the GC method in 
the long axis slice. Left: proposed method. Right: GC method. The binary 
image is the segmentation result, and the contour is the reference. 
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Figure 8. Comparison between the proposed method and the GC method in 
the short axis slice. Left: proposed method. Right: GC method. The binary 
image is the segmentation result, and the contour is the reference. 

The results of the quantitative evaluation of the proposed 
approach are presented in Table I. The accuracy in terms of 
true positive and false positive volume fractions (TPVF and 
FPVF) [9], and average surface distance (ASD) is shown. 
TPVF indicates the fraction of the total amount of tissue in 
the true delineation, and FPVF denotes the amount of tissue 
falsely identified. They are defined as follows, 
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where 
seg

S denotes the extracted voxel set in the segmented 

image, 
ref

S denotes the extracted voxel set in the reference 

image, and 
whole

S denotes the voxel set in the whole image. 

|·| is the cardinality measure of a set. 

In Table I, the proposed method demonstrates much 
higher TPVF than GC method, but similar value regarding 
FPVF. This can be interpreted by a conservative 
segmentation in GC method.  

IV. CONCLUSION 

In this paper, we present a Bézier curve based myocardial 

modeling method. With sparse points distributed in basal, 

middle, and apical slices, a closed triangular surface mesh 

can be generated. Based on this model, a deformable model 

based segmentation method is presented to refine the 

segmentation result. The advantage of the proposed method 

is the produced patient specific model is smooth and close to 

the real myocardial boundary, therefore effectively avoiding 

local minimal for the subsequent model-based segmentation.  

 

 

 

 

The model-based segmentation explores the region 

information rather than the edge information, therefore 

effectively avoiding the influence of the noise. The 

experiments on 8 cases verify the effectiveness of this 

method, and the comparison with GC method shows the 

segmentation result of the proposed method is smoother and 

more accurate. 
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 1 2 3 4 5 6 7 8 mean±deviation 

TPVF (%) 84.2 (53.9) 94.2 (56.1) 94.7 (65.0) 97.4 (58.1) 84.5 (65.5) 90.6 (61.8) 93.1 (69.9) 89.3 (57.5) 91.0±4.8 (61.0±5.5) 

FPVF (%) 0.4 (0.2) 0.1 (0.5) 0.2 (0.3) 0.3 (0.3) 0.4 (0.4) 0.2 (0.5) 0.2 (0.3) 0.2 (0.2) 0.3±0.1 (0.3±0.1) 

ASD (mm) 0.8 (0.5) 0.4 (2.7) 0.4 (0.7) 0.7 (0.8) 0.7 (0.7) 0.3 (1.2) 0.5 (0.6) 0.6 (0.4) 0.6±0.2 (1.0±0.7) 

TABLE I. Quantitative evaluation on 8 cases. λ1=1.0, λ2=0.005, longitude resolution = 36, latitude resolution = 20. TPVF: true positive volume 

fractions, FPVF: false positive volume fractions, ASD: average surface distance.  The values in the parenthesis are the results from GC method.  
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