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Abstract—Fluorescent microscopy is one of the several types
of imaging techniques used by biologists to study cell activities.
One challenge of tracking cells from fluorescence microscopy
is that cells in fluorescent images frequently disappear and
reappear. The situation is further complicated by cell divisions,
which also occur frequently in an image sequence. In this paper,
we apply a level set method to reconstruct cells that disappear in
an image sequence and in particular, cells that are undergoing
cell division. The image frames are stacked together to form a
3D image volume. The disappearance of a cell leads to a broken
cell path. We reconstruct the incomplete cell paths by a level
set segmentation of the 3D image volume. If the disappearance
happens during cell division, the level set method segments the
visible cell paths before and after cell division, and then joins
them together by extending the cell paths into the missing gap.
We also propose a simple and cost-efficient method similar to
inpainting techniques to capture the cell appearance when it
disappears by making use of the level set function obtained from
the segmentation. The idea is that the intensities of a visible cell
on a level set contour are copied to the corresponding contours
of a disappeared cell. We will present results for reconstruction
of cells undergoing cell division for C2C12 cells in fluorescent
images to illustrate the effectiveness of our method.

I. INTRODUCTION
Light microscopy has been an important tool for cell biolo-

gists to study fundamental processes such as cell movement,
cell growth, cell metabolism, cell differentiation, and cell
death [1]. Images are recorded in a time series, for example,
taken every 10-15 minutes over a period of several days.
Typical experiments result in hundreds gigabytes of image
datasets consisting of hundreds to thousands of frames,
each containing many cells undergoing difference behaviors.
Robust automated tracking of cellular activities becomes an
important issue.
Fluorescence microscopy is one of the most popular types

of microscopy that biologists use to study living cells [2].
Cells are tagged with a protein that exhibits fluorescence
when exposed to light of different wavelengths. The flu-
orophore is the component of the protein that causes the
molecule to be fluorescent. The amount of energy emitted
depends on the environment they are in. It is sometimes pos-
sible that the protein does not emit a visible light when the
cell undergoes chemical changes during its division cycle. It
then leads to the issue that the intensities of the fluorophores
may change over time, resulting in cells not observable

*This work was supported by the Natural Sciences and Engineering
Research Council of Canada.

1N. Leung is with the Centre for Computational Mathematics in Indus-
try and Commerce, University of Waterloo, Ontario N2L 3G1, Canada.
ch5leung@uwaterloo.ca

2J. Wan is with the David R. Cheriton School of Computer
Science, University of Waterloo, Ontario N2L 3G1, Canada. jwl-
wan@uwaterloo.ca

from the frames. It has been reported in the literature that
cells in fluorescent images frequently “disappear” [3]. In this
scenario, a cell may initially appear in an image sequence
and then disappear for a short period of time. Afterwards, it
may reappear again, often at a different location.
While the issue of cell disappearance has been known in

the literature, it has not been fully addressed. When a cell
becomes not observable, it is not known whether it has died
or due to low intensity of fluorophores. Only when the cell
reappears can we know what happened. However, how does
one know the disappeared cell has reappeared? It would be
difficult to predict the time and location where the cell will
reappear. When a cell has reappeared, it may be mistakenly
considered as a neighboring cell from the previous frame,
rather than a missing cell from a number of frames before.
Manually tracking these cells can be very time consuming.
The standard cell tracking methods are typically based

on frame-by-frame segmentation [4]. The identified cell
boundaries in a given frame are used as initial guesses for
the position of the cells in the following frame [3]. Since
this approach only uses information from the previous image
frame, difficulty arises to determine the origin of a cell in
the case of a cell disappearing and reappearing. Notice that
the history of a cell is known through the image sequence
which is often available when the current frame is analyzed.
A recent approach [5] takes advantage of the temporal
information by performing segmentation to all the image
frames at the same time in order to identify the missing cells.
However, they do not consider the case when cells undergo
cell divisions which occur frequently in an image sequence.
Moreover, this approach only estimates the outline but not
the inside of the cell in the frames where the cell disappears.
In this paper, we will focus on reconstructing cell paths for
dividing cells and propose a cost-efficient method based on
level set for estimating the cell appearance when the cell
disappears. This approach is completely automatic without
prior information of where the cells are invisible.

II. METHODOLOGY
The image frames are stacked together to form a 3D image

volume [6]. In this way, the path of a moving fluorescent cell
forms a “tube” in the image volume. The cell tubes travel
from the bottom frame all the way up to the top. In the case
of a dividing cell, which is the focus of this paper, the cell
tube will bifurcate to form two tubes. A 3D segmentation of
the image volume will then capture the cell tubes and hence
the locations of the cells at different times. It is important to
note that the 3D segmentation would capture cell divisions
naturally with no manual intervention.
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When a cell disappears and then reappears, it will create
a gap in the cell tube; see Figure 1(a). A standard 3D
segmentation would normally capture the broken pieces
rather than one complete piece of the cell tube, thus failed in
capturing the disappeared cell. The case complicates further
if the disappearance occurs when the cell is dividing. If the
cell disappears when it is dividing, the gap will be located
at where the cell tube bifurcates. Our goal is to connect the
two divided cell tubes with the original single cell tube.

Fig. 1. (a) Disappearance and reappearance of a cell leads to a cell path
with a gap in the middle, (b) segmentation of the incomplete cell path
bridges the gap in the middle.

A. Level set segmentation

The idea is based on the active contour segmentation ap-
proach [5]. Level set methods can segment cells of different
shapes and more importantly, capture naturally topological
changes when cell division occurs. An initial level set
surface, for instance, a large cylinder, is shrunk until the
visible parts of the cell tube are captured. The level set
surface at the location of the gap gives the reconstruction of
the disappeared cell. One may think of the level set surface
as an elastic membrane which captures the gap by stretching
the membrane from a broken piece of the cell tube to the
other. The key is to make sure that the level surface would
not split at the gap.
Let φ be a level set function where φ > 0 denotes the

inside and φ < 0 denotes the outside of the region. Thus,
the level set surface is given by the zero level set of φ. Given
an image function u defined on Ω in 3D, consider the energy
functional [7]:

E(φ) ≡ μ

∫
Ω

|∇H(φ)| d�x + λ1

∫
Ω

|u− cin|2H(φ) d�x

+ λ2

∫
Ω

|u− cout|2(1−H(φ)) d�x,

where H(·) is the Heaviside function, and μ, λ1 and λ2

are parameters. The λ1 and λ2 terms are defined such
that the energy is minimized when the level set surface is
located right on the boundary of the object. The μ term is
a regularization term to minimize the surface area. cin and
cout are mean intensities of the cell image. They play an
important role to evolve the level set surface so that it will
capture the visible broken cell tubes and in the mean time
prevent the level set surface from shrinking at the gap.
The minimizer φ of the energy functional E(φ) satisfies

the steady state of the Euler-Lagrange partial differential

equations:

∂φ

∂t
= δ(φ)

[
μ∇ · ∇φ

|∇φ| − λ1(u− cin)2 + λ2(u− cout)2
]

,

where δ(·) is the Dirac delta function and the initial contour
is given by φ(x, y, z, 0) = φ0(x, y, z).
Now, we define cin and cout. Consider the voxel at

(x, y, z) where z denotes the direction of the image frames.
For the image frame corresponding to z, define the projection
of φ onto this image frame: φz(x, y) = φ(x, y, z). Then
cin is defined as the mean intensity of u in the 2D region
given by φz > 0 and cout the mean intensity of u in the
region given by φz < 0. It is important to note that the
mean intensities are computed on each image frame so that
the segmentation of the visible cells essentially takes place
on each 2D slice. The entire segmentation, however, is still
in 3D since the μ term is computed in 3D.
On the image frames where the cell is visible, the cin

and cout terms will evolve φ so that it will capture the cell
boundary on those image frames as if it is performing a 2D
segmentation. On the frames where the cell is not visible,
then u = cin = cout (assuming there is no noise). Hence
the last two terms will become zero. The only term that will
evolve the level set surface is the μ term. Geometrically, the
μ term computes the mean curvature of φ in 3D and it has
the effect of minimizing the mean curvature of the level set
surface. Near the image frame when the cell just disappears
(or reappears), if the level set surface suddenly closes the gap,
it will generate a large mean curvature. The mean curvature
term will extend the level set surface upward (or downward)
until the bottom part and top part connects. In the case of
cell division, this model will allow the level set surfaces at
the top parts to extend and merge, and eventually connect
with the bottom part; see Figure 1(b).

B. Inpainting of cells

In the reconstruction of the cell images, we propose a cost-
efficient way that preserves the basic appearance structures
of the existing cells. After the segmentation stage, for each
time slice t, we will obtain a level set function φt, and we
will make further use of it for estimating cell appearance.
Before we do so, we note that in general, the function φt

tends to have a drastic behavior away from the zero level
set; see Figure 2 (left). The contour lines tend to squeeze to
each other. We will apply the reinitialization technique [8] to
φt so that the values of φt will become more evenly spaced.
Specifically, we will solve the following equation:

∂φt

∂τ
+ sign(φ)(|∇φ| − 1) = 0,

to the steady state where τ is a pseudo time. After reinitial-
ization, the contour lines will be more evenly distributed; see
Figure 2 (right).
Now we have obtained contour lines for different level

sets in each time slice. Assuming there is no rotational
motion in the missing cells, we can readily reconstruct a
cell image from an existing one using their corresponding
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Fig. 2. Contour lines of a level set function (left) before and (right) after
the reinitialization process.

φt. The idea is to copy the intensities on a contour of φt1 to
the corresponding contour of φt2 .
We first normalize φt in each time slice so thatmax φt = 1

for all t. Assume the center at time t is given by arg max φt.
Let I(x, y, t1) be the intensity function of an existing cell
image with center C1, and I(x, y, t2) be the intensity func-
tion to be calculated in a missing cell image with center
C2. Let θ(x, y, C) be the angle of the point (x, y) with
respect to a center C. The reconstruction part is then given by
{(x, y, t1) : φt1(x, y) ≥ 0}. Now I(·, ·, t2) can be recovered
from I(·, ·, t1) as follows:

I(x, y, t2) = I(u, v, t1)
⇔ θ(x, y, C2) = θ(u, v, C1) and φt2(x, y) = φt1(u, v).

In practice, given a point (x, y) whose intensity is to be
found, the second condition φt2(x, y) = φt1(u, v) may not
always be attained by some (u, v), so this may be relaxed to
φt2(x, y) ≈ φt1(u, v). Alternatively, for rotationally symmet-
ric images, we can choose a fine partition {0 < a1 < ... <
an < 1} of [0, 1], and simplify the reconstruction further to

I(x, y, t2) = average(I(u, v, t1)),

where ai−1 ≤ φt2(x, y), φt1(u, v) < ai. The latter approach
often works well for images in our context. The cost is low
since the main ingredient (contours of φt) has already been
obtained from the segmentation stage, and the reinitialization
usually converges quickly.
The first inpainting approach is successful in capturing

detailed structures between cells that are of similar shapes,
because of the presumably similar φ and the measurement
of θ. The second approach, due to the averaging nature, can
retain larger-scale structures. When the averaging is done
over all the given cell images, common structures present in
most of the given cells can be copied over to the missing
cells.

III. NUMERICAL RESULTS
We test our algorithms by cell images showing live C2C12

cells obtained from experiments performed at the Genomic
Laboratory, McGill University. The original image size is
512× 512, but for illustration purpose, only the portion of a
dividing cell is shown with an image size of around 100 ×
100. Due to limited space, we only show a few examples
here how the segmentation and inpainting methods perform.
All the computation is done on a MAC using MATLAB.

Fig. 3. In a fluorescent cell image sequence, 6 image frames in which a
cell was proceeding through a cell division were replaced by blank image
frames to simulate the disappearance of the cell.

Fig. 4. Reconstruction of the six missing frames shown in Figure 3 using
the level set segmentation algorithm. The reconstructed frames reproduce
the cell division process.

We demonstrate the reconstruction result given by the
level set segmentation described in Section II-A. An image
dataset with a cell undergone cell division visible on all
image frames is taken as the ground truth. We then manually
remove 6 frames from when the cell is just before cell
division to when the cell has divided; see Figure 3. The level
set segmentation is applied to reconstruct the incomplete
cell path. The segmentation results over these 7 frames are
shown in Figure 4. As we can see, the segmentation contours
generally agree well with the disappeared cell. Notice that the
divided cells are recovered in the reconstruction. The result
is better near the ends and gets less accurate towards the
middle where the prediction becomes difficult farther away
from the given visible cells.
Figure 4 also shows the level set inpainting result of the

estimated cell appearance. In this example, the intensities are
obtained from taking the average intensities on each contour.
We note that our cell inpainting method is for simplicity to
achieve fast computation.
Finally, we show a more complicated example where three
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Fig. 5. In this fluorescent cell image sequence, 10 image frames (from 3 locations with gap sizes 3, 3, and 4) in which 3 cells were proceeding through
a cell division simultaneously were replaced by blank image frames to simulate the disappearance of the cells.

Fig. 6. Reconstruction of the 10 missing frames shown in Figure 5 using the level set segmentation algorithm. The reconstructed frames try to capture
the cell division processes of the 3 disappeared cells.

cells are undergoing cell division simultaneously. The origi-
nal image frames are given in Figure 5 and they are replaced
by blank image frames to simulate the disappearance of the
three cells. In this example, the three cells divide into six
cells and they change shapes continuously. The level set
segmentation and inpainting algorithms are then applied to
reconstruct these missing frames. The reconstructed image
frames are shown in Figure 6. With this difficult example,
the reconstruction was able to capture qualitatively the shape
variations and the splitting of the three cells.

IV. CONCLUSION
This paper has demonstrated the challenges of tracking

cells in fluorescent images when cells frequently disappear,
reappear and divide. A level set segmentation method was
applied to capture the disappeared cells. A fast method
was proposed to estimate the cell appearance by utilizing
the level set function available. Results from cell image
sequences show that the segmentation method was able to
capture cell division took place when the cell was invisible.
A future work is to perform a quantitative analysis of the
reconstruction results for the dividing cells.
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