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Abstract—We present a method that significantly improves 

magnetic resonance imaging (MRI) based brain tissue 

segmentation by modeling the topography of boundaries 

between tissue compartments. Edge operators are used to 

identify tissue interfaces and thereby more realistically model 

tissue label dependencies between adjacent voxels on opposite 

sides of an interface. When applied to a synthetic MRI template 

corrupted by additive noise, it provided more consistent tissue 

labeling across noise levels than two commonly used methods 

(FAST and SPM5). When applied to longitudinal MRI series it 

provided lesser variability in individual trajectories of tissue 

change, suggesting superior ability to discriminate real tissue 

change from noise. These results suggest that this method may 

be useful for robust longitudinal brain tissue change estimation. 

I. INTRODUCTION 

Brain imaging studies increasingly depend on the ability 
to accurately and consistently identify changes in tissue 
volumes over time from serial MRI. Many methods for 
assigning tissue labels to pixels in an individual MRI are 
applicable to this problem: such methods are applied 
separately to each individual MRI in a longitudinal series. 
Typically these approaches use automatic initialization (see 
e.g. [1, 2]) together with the expectation-maximization (EM) 
algorithm [3] and Markov random fields (MRF) (see e.g. [4, 
5]) to estimate Bayesian maximum a posteriori (MAP) tissue 
labels [4, 6] that agree with prior knowledge of tissue 
appearance and are situated in a plausible spatial 
arrangement. 

Comparatively little attention, however, has been paid to 
the problem of tissue segmentation consistency over time. In 
many cases, volumes of specific tissue compartments are 
expected to increase (e.g., gray matter in typically-
developing children) or decrease (e.g. gray matter in elders 
with Alzheimer’s disease) steadily over time in any 
individual; methods that separately segment each image in a 
longitudinal series are not strictly required to enforce such 
plausibility. SIENA [7, 8] is one method that does attempt to 
enforce plausible longitudinal change, but it is aimed at 
reporting overall brain tissue loss rather than changes to 
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specific compartments (i.e., gray matter, white matter, and 
cerebrospinal fluid – CSF). In addition its performance has 
been shown to deteriorate in the presence of noise or MRI 
field non-uniformities [9]. Another approach uses a true “4-
D” image framework to ensure that tissue classification of an 
image voxel is consistent with its neighbor locations in both 
space and time [10]. This is accomplished using warps to 
register images from all time points to a template, followed 
by segmentation that encourages both spatial and temporal 
consistency in labels. State-of-the-art MAP algorithms for 
tissue appearance and spatial arrangement do not scale well 
to segmentation problems involving many images in a series; 
thus, approaches of this type are forced to make 
approximations that amount to playing a tradeoff between 
temporal consistency and accuracy of segmentation at any 
given time point. 

In this paper we propose that incorporating robust tissue 
boundary estimates into tissue segmentation of individual 
images in a longitudinal series can lead to greater plausibility 
in tissue change estimates. In an MRF model of tissue spatial 
arrangement, we use tissue boundaries estimated from edge 
operators to encourage differing tissue labels on opposite 
sides of a boundary. We compare this Gradient-based 
Segmentation (GSeg) method against two readily available 
and commonly used tools, SPM5 
(http://www.fil.ion.ucl.ac.uk/spm/) [11] and FAST 
(http://www.fmrib.ox.ac.uk/fsl/) [5], for segmentation 
performance on an individual synthetic image corrupted by 
varying degrees of noise, and on real longitudinal MRI series 
of elderly individuals. We hypothesized that incorporating 
boundary information into an MRF would enable  greater 
robustness against noise and improved longitudinal 
consistency of tissue change estimates. 

II. METHODS 

A.  Maximum a Posteriori (MAP) Algorithm 

 The image is defined as an array y of intensities, with one 

entry yi for each pixel i. A segmentation of the image is a 

corresponding array of labels x, such that each pixel label is 

drawn from a small set of K possible labels {L1, L2, ..., LK}.

 Here K will be 3 or 4, corresponding to CSF, gray matter, 

normal white matter, and optionally white matter 

hyperintensities. Given a conditional probability density p 

for the segmentation labels conditioned on the image 

intensities y, we seek an optimal labeling, x*, such that 

 
     
x* = arg max

x
p x | y( ) .           (1) 

 Using Bayes’ Theorem, this is equivalent to solving 
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x*  arg max

x
p( y | x ) p(x ).           (2) 

 The two components in equation (2) are the measurement 

model p( y | x )  and the prior model p(x). The measurement 

model requires that the intensity of every pixel assigned to a 

particular tissue class be drawn from a Gaussian distribution 

whose mean and standard deviation are estimated at the time 

of segmentation. The prior model assumes that x is a Markov 

random field (MRF) so that the prior probability of a tissue 

label xi at voxel i depends only on the labels of neighboring 

voxels. The prior model quantifies the degree to which xi and 

neighbors have a plausible assignment of labels, based on the 

number of neighbors whose labels agree with xi as well as an 

expected frequency of each possible label. It is expressed as 

a Gibbs distribution [4] of the form 

  p x
i 

1

Z
exp V

c
x
i   k

 x
i
 k  ,          (3) 

where Z is a normalizing constant,  is an indicator returning 

1 if the condition inside the parentheses is true and zero 

otherwise, and k  measures the weight of belonging to tissue 

class k. The Vc have the format 

 

   V
c
x
i  

1
f
1
x
i  

2
f

2
x
i           (4) 

where f
1

and f
2

are functions depending on the tissue class 

labels of first-order and second-order neighbors, 

respectively, and the  coefficients are determined at each 

iteration [4]. We select the form of f
1

 and f
2

 to adapt the 

prior to the presence of edges, as described below.  

 We use an iterative EM optimization to interleave 

estimation of x* based on current  and  estimates and 

Gaussian intensity distribution parameters, with estimation of 

, , and Gaussian parameters based on the current x*[4].  

 

B. Adaptive Prior Model 

 Our prior model weights label differences between xi and 

its neighbors differently depending on the likelihood that a 

tissue interface passes near location i, as determined by the 

image intensity gradient magnitude. Far from tissue 

boundaries, we encourage homogeneous tissue 

neighborhoods (i.e. encourage all xj to be equal) by selecting 

f
1

 and f
2

 functions that take minimal values when this is 

true. Conversely, near edges different f
1

 and f
2

 functions 

are chosen that are minimized when the neighborhoods 

consist of two equally represented classes.  

    In particular, far from edges both f
1

 and f
2

 take on this 

form: 

    f ( x
i
 L

j
) 

N

2
 n (L

j
)          (5) 

for tissue class Lj, where n(Lj) is the number of neighbors of 

voxel i that are labeled Lj, and N is the total number of 

neighbors. It is minimal (negative) when all neighbors are of 

the same class L
j
as voxel i. Near edges, by contrast,   

      f (x
i
 L

j
) 

N

2
 n (L

j
)  n (L

k
)

k  j

        (6) 

The first term of this function is minimized (zero) when 

exactly half of the pixels in the neighborhood are labeled Lj. 

The second term is minimized when the product is zero, i.e. 

n L
k  0 for some tissue class L

k
 L

j
. Thus we reward an 

edge voxel xi where half the neighbor voxels are of the same 

class as xi, with the rest being all of one other class. Given 

the format selection of the f functions to use at voxel i, we 

label xi as the class Lj for which Vc(xi) is minimized. 

 To select the format of the f functions at each voxel, we 

calculate the image gradient magnitude by convolving the 

image with derivative of Gaussian filters in the x, y and z 

directions (2.4 mm FWHM), calculating the Euclidean (sum 

of squares) gradient magnitude from the partial derivatives. 

We construct the histogram of gradient magnitude values and 

set a threshold for edge proximity to be the gradient 

magnitude where the maximum histogram peak occurs (i.e. 

the histogram “mode” or most frequent value of the gradient 

magnitude). Voxels whose gradient magnitudes are above 

this threshold are considered to be near edges and assigned 

the set of f functions (6); other voxels use the functions (5). 

C. Automatic Initialization using Template-Based Tissue 

Masks 

   Our EM procedure alternates between estimating voxel 

labels and estimating MRF parameters.  We initialize the 

labels using template-based tissue probability maps 

generated in-house.Each tissue probability map is warped 

onto the native subject image via a high-dimensional B-

spline warping [12] previously computed to match a normal 

elderly minimal deformation template [13] with the subject 

brain. When the warped probability masks are overlaid on 

the native brain image, an initial classification x is made 

labeling each voxel with the tissue class corresponding to the 

highest value among the three warped probability masks.  

III. RESULTS 

We compare the performance of our method against 
FAST and SPM5 using visual comparisons and a 
segmentation of the BrainWeb template. We then analyze the 
utility of the segmentations for measuring longitudinal tissue 
change. Finally, we illustrate the contributions of the 
adaptive prior to segmentation accuracy. 

A.  Comparisons Using the Synthetic Image Template 

     Each of the three methods were used to segment the 

BrainWeb [14] (http://www.bic.mni.mcgill.ca/brainweb/) 

template image at two levels of random Gaussian noise: 3% 

and 5%.  

     Visual comparison of the BrainWeb segmentations is 

presented in Fig. 1. Segmented tissue boundaries appear 

comparable at low noise levels (3%-5%) across all methods 

with the exception of brainstem segmentation for FAST 

(black arrow in row 2): at 5% it appears (erroneously) white. 

The GSeg method did a better job of representing small sulci 

and finger-like extensions of the white matter into gray, 

though possibly overstating sulcal CSF.  
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 GSeg               FAST                SPM 

Figure 1. Segmentation of BrainWeb template at noise levels 3% 

(top row), 5% (bottom).  

 

B. Statistical Analysis of Longitudinal Segmentation 

     We applied the three methods to brain MRI of 57 

cognitively normal and 60 demented individuals from the 

ADNI study and compared one-year changes in gray matter, 

white matter, and CSF across methods [15]. Images from 

each individual’s baseline, 6 month, and 1 year visits were 

segmented by each method. Fig. 2 shows baseline and one-

year results for a single subject. Methods were compared for 

within-person variation in tissue volumes over time. To 

assess within-person variation, for each segmentation method 

and tissue type a subject-specific linear regression was fit to 

the tissue volumes as a function of time, and the sum of 

squared residuals was recorded. Segmentations with lesser 

residuals may be able to quantify the true rate of change 

more precisely under an assumption of linear change, and 

thus may have greater utility for detecting true tissue change 

in longitudinal studies of brain aging. 
We compared methods using a randomized block 

analysis of variance (ANOVA), with subjects as blocks, 
methods as fixed effects, and the logarithm of the sum of 
squared residuals as the outcome measure. Post-hoc pair 
wise comparisons between the methods were performed, 
with adjustments to the p-values using the Tukey Honestly 
Significant Differences (HSD) approach to account for 
multiple comparisons. Freidman’s rank test and the 
corresponding rank-based multiple comparison adjustment 
were used if the assumptions of the ANOVA were not met 
by the data. Analyses were conducted separately for AD and 
Normal subjects and p<0.05 was considered statistically 
significant. For longitudinal gray matter change in AD 
subjects there was a significant difference between methods 
in within-person variation (Fig. 3 top, p<0.01), with GSeg 
showing significantly less within-person variation than both 
FAST and SPM (p<0.05, adjusted) and FAST having 
intermediate variability between GSeg and SPM. In Normal 
subjects there was a significant difference between methods 
in within-person variability (Fig. 3 bottom, p<0.05).  SPM 
had significantly greater variability than GSeg (p<0.05 
adjusted), but GSeg and FAST were not significantly 
different.  

 

  

 
 GSeg   FAST   SPM 

Figure 2. Comparison of segmentations of a single subject at 

baseline (top row) and one year scan (bottom). 

 

       FAST  GSeg   SPM 

. 

 
Figure 3. Plots of one-year trajectories of gray matter volume for 

the AD and normal groups.  The average trajectory for each method 

is shown in black. Top row: AD group. Bottom: Normal. 
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C. Contribution of Adaptive Prior 

    Fig. 4 shows samples of segmentation of the BrainWeb 

template with 3% noise, using the adaptive prior (equations 

(5-6)) compared with a prior that favors homogeneous tissue 

neighborhoods everywhere [4]. Clear differences between 

the panels are visible. The boundary between lentiform 

nucleus and cortical gray is more clearly delineated in the 

right panel. The middle panel merges the two gray areas 

whereas the adaptive technique keeps them separated. 

Similarly, sulci in the vicinity of the insula show greater 

coherence in the right panel. 

 

  
Figure 4. Segmentation of frontal cortex and subcortical nuclei 

without adaptive cliques (middle) and with (right). Compare 

quality of detail with template brain image (left).   

IV. DISCUSSION 

    Fig. 3 suggests that the GSeg method has achieved, on 

average, straight-line estimates of one-year longitudinal 

tissue change, unlike the other methods; this linear change 

may be more biologically plausible than nonlinear change, 

and therefore the GSeg method may be superior for 

quantifying longitudinal change. Examination of the single 

subject in Fig. 2 suggests that subcortical segmentation is a 

specific reason for its superiority. GSeg has a more robust 

and consistent representation of subcortical areas (thalamus 

and putamen) over time than either FAST or SPM5. Cortical 

details are also better represented in both GSeg and FAST 

than in SPM5. Fig. 4 suggests that the adaptive prior may be 

responsible for this performance advantage. 

    Our method does not simultaneously perform 

segmentation on a series of same-subject longitudinal scans. 

As discussed in the introduction, such true “4-D” techniques 

have tradeoffs of consistency over time vs. accuracy at single 

time points. Insead, our results have suggested that the 

adaptive edge-based technique, applied at single time points, 

results in improved segmentation detail which in turn gives 

improved consistency over images in a longitudinal series 

(Fig. 3).  

    The method has some limitations. Without further 

processing the segmented image tends to be noisier due to 

false positives in edge detection.  This requires a final 

“speckle removal” step in the segmentation algorithm.  

Another potential imitation is that incorrect warping during 

the automatic label initialization could cause 

misclassification which may not be corrected during the EM 

phase, leading to tissue segmentation errors. We have found 

that this has not been a significant issue in most images.  

V. CONCLUSION 

    We have compared three methods of image segmentation 

for consistency of tissue labels over varying levels of noise 

on the BrainWeb template and also for consistency over 

three-time-point longitudinal scans of AD and Normal 

subjects in the ADNI database. Our proposed method uses 

automatic initialization and an adaptive prior to achieve 

more robust segmentation in the presence of noise, 

particularly at tissue boundaries. Our results have indicated 

that these components can improve the segmentation of 

longitudinal image series compared to FAST and SPM.  
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