
Phosphene Vision of Depth and Boundary from Segmentation-based

Associative MRFs

Yiran Xie, Nianjun Liu and Nick Barnes

Abstract— This paper presents a novel low-resolution
phosphene visualization of depth and boundary computed
by a two-layer Associative Markov Random Fields. Unlike
conventional methods modeling the depth and boundary as an
individual MRF respectively, our algorithm proposed a two-
layer associative MRFs framework by combining the depth with
geometry-based surface boundary estimation, in which both
variables are inferred globally and simultaneously. With sur-
face boundary integration, the experiments demonstrates three
significant improvements as: 1) eliminating depth ambiguities
and increasing the accuracy, 2) providing comprehensive infor-
mation of depth and boundary for human navigation under low-
resolution phosphene vision, 3) when integrating the boundary
clues into downsampling process, the foreground obstacle has
been clearly enhanced and discriminated from the surrounding
background. In order to gain higher efficiency and lower
computational cost, the work is initialized on segmentation
based depth plane fitting and labeling, and then applying the
latest projected graph cut for global optimization. The proposed
approach has been tested on both Middlebury and indoor real-
scene data set, and achieves a much better performance with
significant accuracy than other popular methods in both regular
and low resolutions.

I. INTRODUCTION

Stereo matching has been one of the most intensively

investigated research topics as it is useful in a variety of

applications such as scene reconstruction and navigation.

Based on different representations of depth estimation, exist-

ing methods can be sorted into two categories: pixel-wise and

segment-wise. Pixel-based algorithms often suffer from local

noises and have insufficient cues of the scene. As people

generally identify the object and reconstruct the scene by

partitioning the scene into a set of groups each with the

same or similar visual features such as color or texture,

researchers have developed segment-based algorithms upon

the similarity.

Segment-based algorithms [1][2] have dominated the Mid-

dlebury Benchmark [3] due to their good performance on

reducing ambiguity of disparities in textureless regions. They

usually share the assumption that the scene structure can be

approximated by a set of non-overlapping visually homo-

geneous regions where each region corresponds to its own

depth surface. In other words, all pixels in the same segment

should lie on the same depth surface and discontinuities only

occur on boundaries. This assumption certainly enhances

the tolerance of local noise as the depth surface is now
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decided by a group of pixels, the risk of assigning incorrect

disparities to occluded or textureless individual pixels is

decreased. Typical procedures for these approaches are as

follows: first, segmenting the reference image using color-

based segmentation and getting an initial disparity by doing

pixel-based local match; then fitting disparity planes to every

segment using plane fitting techniques; finally the optimal

assignment of planes is approximated by using global-based

optimization tools to minimize a certain energy function.

However, with segments being purely grouped on visual

features, they are still likely to be influenced by local noises.

Imagining a piece of colorful newspaper lying on a planar

table. Clearly the newspaper should locate on the same planar

depth surface. However in segment-based algorithms, every

individual character and color region may be segmented into

different sized segments. Segment-based approaches usually

are not concern with the dimension of the segment, and

simplify each segment as an individual node in the model

for further optimization. Therefore robustness will not be

guaranteed due to the existence of these small segments.

Certainly, it may be regularized by adding smoothness in-

teraction between neighboring segments, but the parameter

of smooth scale is always hard to tune. If the parameter is

too small, these small segments will not be as consistent as

desired, but if too large it will lead to undesired blurring

along surface boundaries because the neighboring segments

that actually cross the surface boundaries are smoothed as

well. An alternative solution is to introduce depth surface

boundaries to distinguish the smoothness of neighboring seg-

ments along the surface boundaries. An experiment motivates

us is that given perfect or near perfect surface boundaries,

state-of-the-art results can be achieved by over-smoothing

segments within the same depth surface.

In the paper, we investigate a novel approach of depth

computation and then down-sampled in low resolution,

which is crucial for some specific applications for artifi-

cial visual simulation[4][5][6]. Under the present hardware

limitation of low-vision devices, the depth must be down-

sampled to a qualified low-resolution. Apparently, some

popular image resizing methods(nearest-neighbor, bilinear,

cubic and so on) will be the straight-forward solution, but

they may bring some serious distortions into the results

in which the surface boundaries are blurred, and depth of

foreground merges into background. This is partially due to

the equally treatment of boundary regions and no boundary

regions. Down-sampling within the same depth surface is

straightforward and easy to implement, but boundary regions

should be handled carefully. Therefore, surface boundary can
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Fig. 1. The proposed two-Layer MRFs Framework. We use color
segmentation as our inputs. For depth estimation in the upper-layer, every
segment is modeled as one node(black). For surface boundary estimation in
the downer-layer, boundaries are further broken into piecewise ones(red).
The green lines are the connection between two layers. For simplicity, here
only draws the two-layer connections(green) of two boundary nodes.

be used as clues into down-sampling process.

Experiments demonstrates our novel approaches could

provide 1)significant improvements by eliminating depth

ambiguities and increasing its accuracy, 2) explicit clues

of depth and boundary for human navigation under low-

resolution phosphene vision, 3) foreground obstacles are

clearly discriminated from surrounding background by in-

tegrating boundary clues into downsampling process.

II. PROPOSED METHOD

The above challenges motivate us to integrating depth

surface boundary estimation into the existing stereo matching

framework so that these two-layer variables could be inferred

together and interact each other. Inspired by Ren’s work[7],

we use one layer of Markov Random Field (MRF) to model

the connectivity of locally found edges, but instead of us-

ing constrained Delaunay Triangulation to approximate the

edges, we novelly break boundaries into pieces so that two

neighboring segments will only have one unique boundary

piece between them. And we treat such boundary pieces

as individual variables in the boundary layer of associa-

tive MRFs. The connection between boundary nodes are

simplified from higher-order to pairwise relationship due to

computational purpose. After these two layers are modeled

separately, we align and associate two layers based on the

topological structure. An example is given in Figure 1. Under

such modeling, a two-layer MRFs is built where one layer

represents depth and the other represents surface boundary.

Along with surface boundaries determined dynamically,

smoothness scaling between segments can be decided as

need, and will only apply within surface boundaries. In some

sense, it can be seen that segments are grouped dynamically

according to boundaries and in some sense segments are

re-partitioned dynamically. And both surface boundary and

depth obtained simultaneously facilitates further recognition

and scene understanding.

Generally, optimizing such framework is quite complex

and challenging. The third-order interaction between two

layers makes standard graph cut approach difficult to apply.

Also widely existing loops will lengthen the time taken

to converge in message-passing algorithms. Thanks to the

latest projected graph cut[8], it minimize the energy by

making projected moves iteratively, in which it fixes one

layer of MRFs at a time, and uses ST-min cut[9] to optimize
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Fig. 2. Overview of the proposed approach. The frames in white are the
processes, frames in blue are the intermediate results.

the other layer. It converges when no lower energy can

be reached. Experiments has demonstrated such inference

algorithm performs well in our application.

The flow chart of our proposed approach is shown in

Figure 2.

A. Typological Structure of two-layer MRFs

In our joint framework, we have two-layer MRFs that

one layer represents depth and the other represents surface

boundary. More formally, two sets of variables are used, X

for depth and Y for boundary. Let Lx = {1, 2, ..., n} be a set

of n different discrete depth plane labels, and Ly = {0, 1}
be a two-variable set for the labels of surface boundary in

which 0 is off and 1 is on. The task is to find a labeling

configuration f that allocates the labels from Lx to each

variables Xi ∈ X and Ly to each Yi ∈ Y respectively. Then

each possible labeling f has its own posterior probability,

the goal is to find the f∗ that has the maximum probability.

According to the Hammersley-Clifford theorem, maximum a

posterior labeling f∗(MAP) is equivalent to the minimum

of the Gibbs energy. We define the proposed energy function

as:

E = ES(x)
︸ ︷︷ ︸

Stereo

+ EB(y)
︸ ︷︷ ︸

Boundary

+ EI(x, y)
︸ ︷︷ ︸

Interaction

(1)

Note that the energy function not only contains energy

terms for stereo matching and boundary estimation alone but

also has energy term describing their interactions.

The first stage of the proposed approach is color

segmentation[10] on the reference image. For stereo match-

ing, every segment is taken as an individual depth node

disregard of their sizes. And for each pair of neighboring

segments, define their unique piece of boundary connection

as one boundary node. An illustration of this process is given

in Figure 1. Note that the boundaries are actually between

pixels, and do not occupy any pixels themselves.
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B. Surface Boundary Potentials

The energy potentials for surface boundary estimation is

defined as

EB(y) = ψB
i (yi) + ψB

ij(yi, yj) (2)

ψB
i (yi) =

∑

yi∈Y

(1 − pbi) · yi (3)

The unary term ψB
i (yi) only penalizes when the boundary

yi chooses to appear. The lower its local probability pbi
is, the higher penalty it takes. To capture pbi, we apply

probability of boundary detector[11] on the reference image

and normalize the result into [0, 1], so every pixel will have

a probability value. For every boundary yi, its pbi is given

as the average of the pixels’ probabilities it passing through.

The pairwise term ψB
ij(yi, yj) encourages two connecting

boundaries to be both turned on or turned off. It takes the

form of the Potts model:

ψB
ij(yi, yj) =

∑

yi,yj∈N

{
0, if yi = yj,

1, otherwise.
(4)

C. Stereo Matching Potentials

Firstly, we employ the fast local pixel dissimilarity

measure[12] to construct the correlation volume for both

left and right images as the reference image. Secondly, we

apply mutual consistency check on the result. Pixels passing

it will be labeled as stable pixel and if the percentage of

stable members of a segment exceeds a certain threshold,

then the segment will be labeled as stable segment.

Thirdly, a segment-based RANSAC plane fitting is carried

out on stable pixels inside each stable segment, the plane

with the least error will be put into label set Lx. If there

are duplicated planes, we keep records of their occurrence

frequency flx .

Plane Extraction with MDL Regularization To cut

down the volume of depth planes in Lx, a plane extraction

procedure is executed. Its energy function is given as:

EMDL = ψi(xi) + ψij(xi, xj) +
∑

l∈Lx

e−flx · δl

︸ ︷︷ ︸

label cost

(5)

δl =

{
1, ∃x, lx ∈ L,

0, otherwise.
(6)

where ψi(xi) is the sum of pixel-based absolute differ-

ence between its original plane and new mapping plane.

ψij(xi, xj) is a Potts model penalizing on difference. Our

modified label cost term[13] penalizes on occurrence fre-

quency of planes. Roughly, the size of Lx is cut down to

less than 20 after this step.

The energy function for stereo is then defined as:

ES(x) = ψS
i (xi) (7)

The unary term ψS
i (xi) is the sum of absolute difference

between current labeling and initial disparity map. We do

not have a conventional pairwise term for stereo here is that

we modified it into an interaction term with boundary, it will

be described in details in next section.

D. Interaction Potentials

For each pair of neighboring xi and xj there will be

an unique piece of boundary namely yk. The interaction

potential is defined as:

EI(x, y) =
∑

xi,xj ,yk

ψij(xi, xj) · yk (8)

where ψij(xi, xj) is a Potts model. The principle of the

projected graph cut is to fix one layer in MRFs at a time

while optimizing the other. When layer X is fixed, and

neighboring xi and xj do not belong to the same depth

surface(ψij(xi, xj) = 1), the energy potential will intend to

decrease itself by encouraging the boundary between to be

appeared(yk = 1). And when layer Y is fixed and yk is

turned on, the energy potential will be 0 thus the smoothness

requirement of xi and xj will no longer be executed.

E. Joint Inference

This two-layer MRFs have the set of variables up to

{X,Y } and label space up to Lx ∗ Ly. Graph with such

complexity is generally difficult to optimize. We bring the

idea of Projected graph cut (PGC) [8] to α-expansion opti-

mization, it gives an approximation of the true labeling at an

acceptable efficiency.

The basic steps for the inference is as follows. We start

randomly either from the initial labeling fX or fY , and do

the optimization recursively. For instance, when we optimize

Y in one iteration, suppose the optimal labeling achieved so

far are f∗

X and f∗

Y . We fix X in EI(x, y) by taking the

values from f∗

X , and put the transformed term together with

the stand alone term EB(y), and use ST-min cut to optimize

variable Y alone. If a lower energy with solution f ′

Y is found,

we keep the f∗

X unchanged and set f∗

Y = f ′

Y . Optimizing

X is applied in a similar subsequent way. When no lower

energy can be achieved in Lx∗Ly iterations, the optimization

stops and returns f∗

X .

F. Downsampling and Phosphene Representation

There exists a variety of image down-sampling methods.

Interpolation of bilinear and cubic will compose new val-

ues for anti-aliasing purpose which may cause confusion

in depth-based human navigation. Although simple nearest

neighbor will not add new value, it is not robust for low-

vision navigation either as it may omit some critical in-

formation in the foreground. In this paper, we propose a

novel down-sampling method by integrating the boundary

clues to the down-sampling process, which clearly help to

discriminate the obstacle object from the surroundings in

phosphene-based low-resolution navigation trial.

A brief example is given in Figure 3. The principle of

nearest neighbor down-sampling is to project every down-

sampled node(pixel) to original image and obtain its sub-

pixel location and coordinates, and then simply select the
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value of its nearest neighbor as its own. However in low-

vision navigation, the priority is to avoid the nearest obsta-

cles. Therefore during the down-sampling process, nearest

neighbor algorithm may omit some critical information of

foreground obstacles which merged into background, and this

will cause serious problems in navigation. Such errors always

happens in surface boundaries where the depth significantly

changed. In the paper, we have modified and improved

nearest neighbor algorithm by integrating the boundary clues

to efficiently solve the problem. During the down-sampling

process, it takes advantages of the boundary map, for the sub-

pixel projected in the original image, if any of its neighbors

in a limited scope locating on the boundary, the sub-pixel will

take the largest depth value among its neighbors, otherwise

it takes the value of its nearest neighbor. The experiments

demonstrates such modification could emphasize the fore-

ground objects significantly in low-resolution vision.

If downsampled pixel with their corresponding 

pixel in the original coordinates locating in the gray area

Proposed

Depth(original resolution)

Depth(downsampled)

Conventional

Nearest Neighbor

foreground

back-

ground

Fig. 3. An example demonstrates the advantage of our downsampling
algorithm comparing to the conventional nearest neighbor.

For stimulated phosphene rendering after down-sampling,

each phosphene is represented by a circular Gaussian whose

center value and standard deviation are modulated by the

depth at that point. In addition, phosphene sums their values

when they overlap. For complete description, please refer to

[14].

III. EXPERIMENT

The proposed method has been tested on Middlebury’s

benchmark images[3] and our indoor navigation real-scene

dataset. The performance of other two popular global pixel-

wise matching approaches, Graph Cut(GC) and Belief Prop-

agation(BP) have been compared. The analysis on the real-

scene dataset is presented in Figure 4 and Figure 5, while

the comparisons on the Middlebury’s images are in Figure

6 and Figure 7. The testbed is on a desktop computer with

Intel I3 2.93Ghz CPU and the proposed algorithm takes less

than 100 seconds to process a high-resolution image pairs.

From the results of the indoor image pairs in Figure 4, It

clearly presents that our approach has more natural and con-

tinuous depth than traditional graph cut under both obstacle

and non-obstacle image pairs, as well as the obstacles stand

discriminatively from the background. When comparing the

performance of downsampled results, the obstacle objects are

clearly discriminated from the surroundings after integrating

the boundary clues into down-sampling process and it is

valuable for further object detection use. While the obstacles

in the traditional down-sampled look vague. In Figure 5 of

Fig. 4. The first row includes the original image without obstacles, its
original-size and downsampled depth computed by Graph Cut, followed
by second row with the results obtained by our algorithm, respectively
surface boundary, depth and its downsamples. The third and forth rows
are the results of the images with obstacles. (Original image size: 500 *
312, downsampled image size: 32 * 20)

Fig. 5. Phosphene simulation of indoor scene with obstacles. The first row
uses the full camera size image as the input, while the last two rows are
the obstacles zoom-in effect which could be crucial in real navigation. The
second and third columns are the result by Graph Cut and the proposed
algorithm respectively. It can be seen that the latter one has obvious
advantage in obstacle distinction.

zooming out interest regions, those obstacles could be more

clearly observed in phosphene visualization.

For quantitative analysis, the proposed method has been

tested together with Graph Cut and Belief Propagation on

two classical Middlebury image pairs Venus and Teddy,

under three different scales of original size, 1000 and 100
samples respectively. The accuracy is calculated in the

following way. For every unoccluded pixels, the absolute

difference of their depth with ground truth is calculated.
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(a) (b) (c)

(d) (e)

Fig. 6. Results on Middlebury’s Teddy image pair: (a) original image, (b)
ground truth, (c) result by Graph Cut, (d) result by Belief Propagation, (e)
result by proposed method.
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Fig. 7. Quantity analysis of precision of the proposed algorithms comparing
to Graph Cut and Belief Propagation in three scales. The accuracy is
computed as the average of Teddy and Venus image pairs.

Pixel with difference large than 1.0 will be labeled as bad

pixel. The error rate is the average percentage of these bad

pixels over all unoccluded pixels in two Middlebury images.

The original ground truth and occlusion map are all down-

sampled to align the comparison under difference scaling.

The results of Figure 6 and Figure 7 clearly demonstrate our

method outperforms other two approaches at all three scales

consistently and achieved the best accuracy with the error

rate less than 2%.

IV. CONCLUSION

The paper proposed a novel two-layer associative MRFs

for both depth and boundary estimation. The topologies

of energy interactions and minimization are well obtained.

The experiments demonstrate both depth and surface bound-

ary have been significantly improved through the positive

mutual energy interactions among two MRFs layers both

quantitatively and qualitatively, when comparing with other

traditional methods.After integrating the boundary clues into

down-sampling process, the objects are clearly discriminated

from the surroundings in both traditional and phosphene

visualization under low resolution. Future research will ex-

tend such approach to object recognition and assist human

navigation better.

V. ACKNOWLEDGEMENTS

Thanks are due to Paulette Lieby and Adele Scott for

writing the simulated prosthetic vision software[14] used in

this paper.

NICTA is funded by the Australian Government as repre-

sented by the Department of Broadband, Communications,

and the Digital Economy, and the Australian Research Coun-

cil (ARC) through the ICT Centre of Excellence Program.

This research was also supported in part by ARC through its

Special Research Initiative (SRI) in Bionic Vision Science

and Technology grant to Bionic Vision Australia (BVA).

REFERENCES

[1] Z. Wang and Z. Zheng, “A region based stereo matching algorithm
using cooperative optimization,” in CVPR, 2008.

[2] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister, “Stereo
matching with color-weighted correlation, hierachical belief propaga-
tion and occlusion handling,” in CVPR, 2006.

[3] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” IJCV, 2002.

[4] R.; Maingreaud F. Pissaloux, E.; Velazquez, “Intelligent glasses: A
multimodal interface for data communication to the visually impaired,”
in MFI, 2008.

[5] E.E. Pissaloux, “A vision system design for blinds mobility assis-
tance,” in EMBC, 2002.

[6] M.; Sivaprakasam M. Wentai Liu; Fink, W.; Tarbell, “Image process-
ing and interface for retinal visual prostheses,” in ISCAS, 2005.

[7] X Ren, C. Fowlkes, and J Malik, “Scale-invariant contour completion
using conditional random fields,” in ICCV, 2005.

[8] Russell.C Sturgess.P Bastanlar.Yalin Clocksin.William Torr. P.H.S.
Ladicky.L, Sengupta.S, “Joint optimisation for object class segmenta-
tion and dense stereo reconstruction,” in BMVC, 2010.

[9] Y Boykov and V Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision,” TPAMI,
2001.

[10] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” TPAMI, 2002.

[11] David R. Martin, Charless C. Fowlkes, and Jitendra Malik, “Learning
to detect natural image boundaries using local brightness, color, and
texture cues,” TPAMI, 2004.

[12] Stan Birchfield and Carlo Tomasi, “A pixel dissimilarity measure that
is insensitive to image sampling,” TPAMI, 1998.

[13] A. Isack H.N. Boykov Y. Delong, A. Osokin, “Fast approximate
energy minimization with label costs,” IJCV, 2010.

[14] Paulette Lieby, Nick Barnes, Chris McCarthy, Nianjun Liu, Liu
Dennett, Janine Walker, Viorica Botea, and Adele Scott, “Substituting
depth for intensity and real-time phosphene rendering: Visual naviga-
tion under low vision conditions,” in EMBC, Boston USA, September
2011.

5318


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

