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Abstract— Cell tracking is a crucial component of many
biomedical image analysis applications. Many available cell
tracking systems assume high precision of the cell detection
module. Therefore low performance in cell detection can heavily
affect the tracking results. Unfortunately cell segmentation
modules often have significant errors, especially in the case
of phase-contrast imaging. In this paper we propose a tracking
method that does not rely on perfect cell segmentation and
can deal with uncertainties by exploiting temporal information
and aggregating the results of many frames. Our tracking
algorithm is fully automated and can handle common challenges
of tracking such as cells entering/exiting the screen and mitosis
events. To handle the latter, we modify the standard flow
network and introduce the concept of a splitting node into
it. Experiment results show that adding temporal information
from the video microscopy improves the cell/mitosis detection
and results in a better tracking system.

I. INTRODUCTION

Analysing cell movement and motility is an important
part of many biological studies including cancer research
and drug discovery [1], [2]. This is because most active
cellular behaviours and functions involve movement. Manual
analysis and observation of cellular images is an error prone
task and requires long periods of tedious effort, as each
image often contains hundreds of cells. A reliable automated
tracking system can reduce human errors and speed up the
image analysis. Design of an automated tracking system is
an ongoing interest in computer vision [1], [2], [3], [4], [5],
[6], [7], [8], [9].

A successful tracking system should address the common
challenges of cell tracking, including cells entering/exiting
the screen and mitosis events. Although numerous techniques
have been proposed for cell tracking, tracking algorithms
maybe classified into two main groups: tracking by model
evolution and tracking by data association [1].

In tracking by model evolution, cell trajectories are
computed by fitting a model around cells. This is achieved
by minimizing an energy function, and the solution is
then propagated to the next frame as an initial point of
the optimization [1], [3], [4], [5], [6]. Active contours and
level sets are the two main algorithms successfully used
in this group. Active contours require special treatment for
handling mitosis events due to their limitations in dealing
with topological changes [4]. On the other hand, level sets
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are far more adaptable to topological changes and have
been used extensively. However both algorithms suffer from
the local optima problem and are not able to incorporate
temporal information to improve tracking results. Moreover
the system needs to evolve the cell models on each frame,
which makes them computationally expensive.

In tracking by data association, cells are first detected
in each frame and then individual cells are associated with
each other. Association is performed based on features such
as intensity or their relative spatial location [2], [7], [8].
When addressing the general data association problem, there
are two main approaches. The first is to detect objects in
individual frames and then connect the most likely objects
to each other [10]. The drawback of this method is that it
makes a strong assumption on the correct outcome of object
detection and cannot deal with uncertainties. The second
approach is to discretise the tracking area. Each discretised
location will represent the probability of the object being in
that location. This framework enables the tracking algorithm
to deal with detection noises [10], [11].

Padfield et al.[2], introduce the coupling minimum-cost
flow tracking algorithm that associates detected cells in
two frames in fluorescent microscopy. The authors suggest
modelling the tracking problem as a graph matching
problem. Unfortunately this method requires a very good
detection algorithm to detect cells in almost all frames,
which is difficult to achieve in phase-contrast microscopy
because of their poor image quality. Moreover it solves the
problem using two frames at a time and does not incorporate
the temporal information available in video microscopy to
improve the results. Thus any error of the cell detector will
compromise the tracking result.

In this paper we propose a tracking algorithm that does
not require a perfect detection module. In fact it does not
even require the detection module to return individual cells,
and only needs probabilities or potentials that represent cell
positions. Unlike other tracking algorithms that require user
interaction or the number of cells a priori [4], [6], the
proposed method is fully automatic and the number of cells
can be inferred from the tracking results. The algorithm
exploits temporal information to improve the tracking out-
come and incorporates that information to detect mitosis
events. It addresses the problem of cells entering/exiting
the screen with a simple formulation, based on concepts
defined by Berclaz et al. for multiple object tracking [11].
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Fig. 1: (a) Shows three frames stacked together, the black
filled node shows xt

i and the edges from and to this node are
the reachable locations (b) shows the source S and sink T
nodes, all the nodes of the first frame are connected to the
source node and all the nodes of the last frame are connected
to the sink node.

The main contributions of this paper are: extending the
network flow tracking algorithm for cell analysis that also
handles cells entering/exiting the screen, adding splitting
node to the standard network flow formulation to handle
cell division, and computing cell potentials along with cell
mitosis potentials for setting edge weights of the network
flow.

In what follows, a brief description of tracking with flow
network is given in section II-A. We then introduce the
concept of a splitting node in section II-C. Cell and mitosis
detection modules are described in II-D, II-E respectively.
Finally the result of the algorithm is shown in section III.

II. APPROACH AND METHODS

For a tracking algorithm that deals with the uncertainties,
noise and errors from cell segmentation, we develop a
model following Berclaz et al. who introduced a multi-target
tracking algorithm for pedestrian tracking [11]. Tracking
is modelled as a network flow problem and is formulated
as simple linear programming. We describe the tracking
framework in II-A. In II-D we show how to set the edge
weights of the flow network for microscopic images. Finally
in II-B and II-C, the original tracking framework is extended
to handle cells entering/exiting the screen and mitosis events
respectively.

A. Tracking with Network Flow

At first the tracked region in each frame is sampled into
K spatial locations on a regular grid. The grid cell size is set
to the diameter of the average cell nucleus. To model object
occupancy over T frames, the frames are stacked together
and a graph with T ×K nodes is created (see Fig. 1). Each
node xt

i of this graph denotes the probability or the potential
of a cell being at position i at time (frame) t. Accordingly an
edge f t

i, j between two nodes xt
i and xt+1

j can be interpreted as
a cell moving from location i at time t to a reachable location
j at time t +1. A set of reachable locations for an object at

Fig. 2: The tracking output of the Fig.3. The splitting node
injects the flow at time t = 5.

location k is defined in a neighbourhood N (k)⊂ {1, . . . ,K}.
In other words N (k) is the set of locations that the object
can reach in the next time frame from location k.

As shown in Fig. 1 (b), two special nodes (S ,T ) are added
to the flow network. Source node S is connected to all the
nodes of the first frame and can initiate a track by emitting
flows. Each flow is then passed on to any of the neighbouring
nodes of the next frame, and this continues until the flow
reaches the last frame and gets injected to the sink node
T . Thus the sink node terminates the tracks. This flow can
be modelled by the following linear programming equations
[11]:

maximize
f

∑i,t, j∈N (i) Ct
i, j. f

t
i, j (1)

subject to ∀ i, j, t, f t
i, j ≥ 0 (2)

∀ t, i, ∑ j∈N (i) f t
i, j ≤ 1 (3)

∀ t, j, ∑i: j∈N (i) f t−1
i, j = ∑k∈N ( j) f t

j,k . (4)

In the objective function (1), Ct
i, j is the cell occupancy

potential that is assigned to each edge and indicates how
likely it is to be part of a cell track. We describe how to
compute this value later in section II-D. Constraints (2) and
(3) make sure that no more than one object occupies the
same location at the same time. Equation (4) imposes the
flow conservation and continuity constraint and ensures that
the total sums of the input and output flows are equal at all
nodes.

The solution of the optimization problem is often integer,
with f t

i, j ∈ {0,1} [12], [11]. Active flows running through
the nodes indicate the possible location of each cell and the
number of cells can be computed by counting the number of
tracks resulting from the flow network. As an example, the
resulting flow network of Fig. 3 is shown in Fig. 2.

The benefit of using this model is that it aggregates the
results of all frames and makes a global decision rather
than propagating the result of each frame to the next. This
makes the algorithm less vulnerable to the errors of the cell
detection module.

B. Cells Entering/Exiting the Screen
The network flow formulation can successfully track those

cells that are visible in the first frame and continue to persist
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in the tracking region until the last frame. This is because the
source and sink nodes are connected to the nodes of the first
and the last frames respectively. However, if a cell enters the
screen after the first frame, the optimization process might
ignore the new cell completely or select an incorrect location
in the previous frames to maximize the objective function.
This is also the case when a cell exits the tracking region
before the last frame.

To address this problem, we add two extra edges ( fS ,i ,
fi,T ) to the neighbourhood of all nodes located on the image
boundaries. fS ,i makes it possible for the algorithm to start
a new track at location i to handle cells entering the screen.
Edges fi,T can terminate a track when a cells leaves the
screen.

C. Splitting Node Extension

One of the main challenges of a cell tracking system is
to handle mitosis events, in which a parent cell divides into
two daughter cells. Before splitting, a parent cell becomes
rounder and brighter compared to its normal state, which is
shown in Fig 3.

Fig. 3: Cell mitosis cycle along with tracking result, shown
as a green plus. The algorithm detects the cell division in
frame 6 and adds a second cross.

The flow conservation constraint in (4) does not allow
outgoing flows to exceed the incoming flows and therefore
does not allow a track to split and follow the two daughter
cells after mitosis. To address this issue, we add a special
node to the flow network called Splitting Node. A splitting
node works exactly like a secondary source node, and can
emit flows and is connected by the edge ( fsplitting,i) to
any node i that does not belong to the first and the last
frames. Any emission from the splitting node will force the
network to initiate another path according to constraint (4).
To suppress unwanted emissions from a splitting node, each
edge fsplitting,i is weighted with a value Mt

i , that is mitosis
occurrence potential. We describe how to compute this value
in section II-E. To model the splitting node, we reformulate
the standard network flow linear programming problem as
follows :

maximize
f

∑i,t, j∈N (i) Ct
i, j. f

t
i, j +Mt

i . f
t
splitting,i (5)

subject to ∀ i, j, t, f t
i, j ≥ 0 (6)

∀ t, i, ∑ j∈N (i) f t
i, j− f t

splitting,i ≤ 1 (7)

∀ t, j, ∑i: j∈N (i) f t−1
i, j = ∑k∈N ( j) f t

j,k . (8)

The main difference of this formulation compared to that
described in section II-A is in the objective function (5) and
the new constraint (7). Flows originating from the splitting
node are introduced while keeping the occlusion assumption.

The advantage of this method for detecting mitosis events
is that the algorithm makes a decision by optimizing globally
across all frames. Therefore if the mitosis detector produces
a false positive result, the algorithm will often suppress the
decision if it is not consistent with other evidence. Also if
the detector does not detect the mitosis, the network will
force the splitting node to create a new path if the new path
can increase the objective function value.

D. Cell Occupancy Potentials

To determine the likelihood that a node in the network
might contain a cell, we measure the cell occupancy po-
tential Ct

i, j, used in (1) . In order to compute it, first cell
regions are distinguished from background regions using the
method previously proposed [9]. Then distance transform is
computed on the resulting mask and the outcome is stored in
Dt (t indexes the frame number). As the nucleus of a cell is
often located at its centre, Dt has high values for the nucleus,
smaller values for its cytoplasm and zero values for the
background. Dt is normalized adaptively by the maximum
depth of each connected component individually and any
value less than dt is suppressed (we set dt = 0.7 empirically).
Finally the value of the cell occupancy potential Ct

i, j is
calculated as follows:

ψ(i, j, t) = max
(m,n)∈Z(i)

(Dt
(m,n))+ max

(m,n)∈Z( j)
(Dt+1

(m,n)) , (9)

Ct
i, j = log(

ψ(i, j, t)
1−ψ(i, j, t)

) . (10)

In (9), Z(i) is a set of original image pixels mapped to spatial
location i. Heuristically, Ct

i, j will have negative values when
the probability of a cell being at location (i, j) is low.

E. Mitosis Occurrence Potentials

To approximate the mitosis occurrence potentials Mt
i used

in (5), we train a logistic regression classifier on the his-
togram of gradients (HOG) of cells in their normal state and
their mitosis state, on a window of size Sm (Sm is the average
size of cells in mitosis state). For computing Mt

i , a window
of the same size is centred at location i of the original image
and the corresponding sub-image is passed on to the logistic
regression classifier. Because of the probabilistic nature of
logistic regression, we can use the same formula that was
mentioned in section II-D to set the weight of the splitting
edges.

III. RESULTS

We tested the splitting flow network tracking algorithm
on a video with 122 frames (frame size 650×515) with 42
mitosis events. Our experiments showed that incorporating
temporal information improves the cell detection, tracking
and mitosis detection significantly. To quantitatively evaluate
the mitosis detection, we compare the number of detected
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mitosis events using logistic regression classifier with no
temporal information, and the number of detected mitosis
events using the splitting flow network. To accomplish this,
mitosis classifier results are computed on a window of size
Sm centred around each cell pixel as described in II-E.
Let It

c be the result of the mitosis classifier on all cell pixels
in frame t. A mitosis mask It

m is created by thresholding
the resulting classifier image (It

m = It
c ≥ λ , where λ is the

threshold). The noise in the resulting mask is removed by
suppressing all connected components that are smaller than
Sm
2 . The outcome is then compared to a ground truth image

labelled by an expert. Mitosis events are labelled in the
ground truth images only once and exactly before the cells
split. If the logistic regression classifier returns a positive
response in any of {It−2

m , It−1
m , It

m} frames and there is a
labelled mitosis event in frame t, then the classifier output
is considered to be true positive.

To compare the results, the receiver operating character-
istic (ROC) curve of the logistic regression with different
values of λ is drawn. The fraction of true and false positives
of mitosis detection using splitting flow network outcome is
also computed. As shown in Fig. 4, mitosis detection using
the splitting flow network outperforms the logistic regression
classifier (for 24 true positives, logistic regression mitosis
classifier produces 287 false positives while mitosis detection
using network flow produces 20, which is 14 times fewer
than the logistic regression classifier). The number of mitosis
events detected by the splitting flow network is a function of
the parameters Ct

i, j and Mt
i, j and the result shown in Fig. 4

corresponds to the specific values of these variables chosen.
In principle different methods of calculating these parameters
may generate different points.
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(II) ROC Curve Zoomed In

Fig. 4: ROC curve for different values of λ . The filled green
dot shows the result of mitosis detection using temporal
information.

IV. CONCLUSIONS
In this paper we have proposed an automatic cell segmen-

tation algorithm that does not rely on a perfect segmentation
module. The algorithm can track cells that enter or exit the
screen and can also handle cell division, using splitting nodes
added to the network flow graph. The tracking framework
is not dependent on a particular cell detection technique
and can use any cell detection algorithm that computes the
required cell potentials. The algorithm still cannot handle cell

occlusion. Occlusion happens when the flows merge together
at a node in the graph. The algorithm cannot distinguish
between selected occluded cells. Future work includes an
automatic post processing step that traverses the resulting
tracking network and prunes the occluded edges.
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