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Abstract— Image registration of abdominal organs and soft 

tissues is considered daunting due to large organ shift and tissue 

deformation caused by patient motion, respiration, etc. In this 

study, we propose a novel neuro-fuzzy deformable registration 

technique that is constrained by 3D curves of vessel centerlines 

and point marks while minimizing strain energy. We present an 

analytical global optimal solution in the case when 3D curves, 

strain energy and point marks are considered, which will 

provide fast and robust deformable match for internal 

structures such as blood vessels, and significantly reduce the 

chance to get trapped in local minima. We have demonstrated 

the effectiveness of our deformable technique in registering 

liver MR images. Validation shows a target registration error of 

1.98 mm and an average centerline distance error of 1.65 mm. 

This technique has the potential to significantly improve 

registration capability and the quality of intra-operative image 

guidance. 

I. INTRODUCTION 

In this study, we investigate new techniques for 
deformable registration of soft tissues such as the liver. In 
order to guide therapeutic procedures and achieve more 
accurate diagnosis of diseases, it is often helpful to fuse 
together multiple liver images from different sources. 
Although image registration for mostly rigid structures such 
as the brain and bone is normally a manageable task, it is 
more difficult to align liver images where we have to deal 
with large organ shift and soft tissue deformation caused by 
patient motion, respiration, heartbeats, surgical manipulation, 
etc. There are similar challenges for other abdominal organs 
[1,2,3]. 

Blood vessels are critical structures of many organs and 
provide fundamental information in many clinical 
applications. Blood vessels are often imaging targets in 
different imaging modalities such as MRA, CTA and 
ultrasound, provide good features for image registration, and 
are good references for localizing targets deep inside organs. 
Vessels in the liver are dominant image features, which make 
them an ideal feature reference for image registration. 
However, it is still very challenging how to effectively use 
vessels in image registration since these vessel structures 
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often cause intensity-based image registration algorithms to 
get trapped in local minima. In this study, we propose a 
novel neuro-fuzzy deformable registration technique that is 
constrained by 3D curves and point marks while minimizing 
strain energy caused by deformation of soft tissues. We 
present an optimal analytical solution in the case when 3D 
curves, strain energy and point marks are considered, which 
provides fast and robust deformable match for internal 
structures such as blood vessels, and significantly reduces 
the chance of getting trapped in local minima in image 
registration. 

Our novel neuro-fuzzy transformation model consists of 
multiple region-based sub-models. The advantage is that 
each region can have a different model, which can be chosen 
according to deformation characteristics of regions. The 
strain energy constraint provides good generalization 
properties, prevents the issue of overfitting (for example, 
physically impossible deformation), and leads to physically 
consistent deformable match results. Sample sets of liver MR 
images of human subjects were used to evaluate the 
performance of the proposed registration approach. 

II. METHODS AND MATERIALS 

A. Physics-Based Registration Methodology 

In this study, we apply multiple techniques to address the 
challenge of nonlinear registration of images with soft tissue 
deformation. Our registration methodology is based on 
elastic solid mechanics and the minimum strain energy 
principle. We aim to minimize the following energy function 
consisting of four terms:  

)()()()( xEwxEwxEwxEwJ
mmcceeimim

      (1) 

This energy function measures the quality of alignment 
between the fixed image and the transformed moving image. 
The first energy term )( xE

im
 is image intensity-based 

normalized cross correlation (NCC). )( xE
e

 is the strain 

energy produced by deformation of soft tissues. 
Minimization of strain energy will yield physically 
consistent/plausible deformation. The third energy term )( xE

c
 

is to minimize the distance between pairs of 3D curves 
(blood vessel centerlines) extracted from the fixed and 
moving images, which ensures that the resulting optimal 
deformation should align internal vessel structures. The last 
term )( xE

m
 is the distance between corresponding point 

marks such as bifurcation points. Weights wi are used to 
adjust relative effects of each term. Therefore, combination 
of the above four energy terms provides different 
mechanisms to constrain final registration solution to a 
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physically consistent deformable match. Furthermore, if 
considering the last three energy terms, we provide a fast and 
robust analytical solution through specific design of different 
registration components. 

B. Region-Based Neuro-Fuzzy Transformation Model 

In this section, we propose a novel neuro-fuzzy 

transformation model that consists of 
R

N  region-based sub-

models. The advantage is that each region can have a 
different model, which can be chosen according to 
deformation characteristics of the region. In many cases, 
different deformation patterns occur only in local regions. 
Many local deformation models such as B-Spline and free-
form deformation have been developed [4,5]. However, they 
generally require a large number of transformation 
parameters, which leads to large search space,  making 
registration computationally intensive. 

Neuro-fuzzy technique is a branch of artificial 
intelligence, which integrates artificial neural networks and 
fuzzy logic theory to take full advantage of both techniques. 
The main benefit of this approach is its learning and 
adaptation ability, good interpretability and easy integration 
of expert knowledge, that is, by using the fuzzy rules, the 
approach tries to simulate a person’s line of thought in 
decision-making. We adopt adaptive neuro-fuzzy inference 
system (ANFIS) [6] to integrate region-based sub-models 
into a unified transformation model. Our neuro-fuzzy system 

has the following 
R

N rules: 

Fuzzy rule i: If point x is in region Ri, then x’= Ti(x) 

where x is a 3D point in the fixed image space, x’ the 
corresponding transformed point, Ti(x) a local transformation 
model specifically tailored to Region i. In summary, the 
overall transformation T(x) can be derived as [7],  
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where Mi(x) is the membership function of a fuzzy set 

associated with each region Ri.  
By selecting an appropriate membership function for 

each region, transition of the transformation model from one 
region to another can be gradual or sharp, which provides 
great flexibility to achieve desirable transitions between the 
sub-models. Furthermore, with the help of flexibility to 
select an appropriate membership function associated with 
each region, we can easily choose proper local membership 
function to limit the effective range of a global 
transformation model to the desired region in our neuro-
fuzzy model. Therefore, we can take full advantage of good 
generalization of global models and representation capability 
of local deformation of local models. To represent complex 
deformation in one region, we have the flexibility to either 
select a more complicated model or place more dense local 
models. All the local models are not necessarily distributed 

uniformly, so our model can reduce the total number of 
transformation parameters. 

In this study, membership functions are selected as 3D 
Gaussian functions.  
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where  
iziyix

ccc ,,  is the center of Region i, and parameters 

 
iziyix

 ,,  are used to control the effective range of local 

model )(xT
i

. 

In general, the overall transformation model T(x) is 
nonlinear with respect to spatial position x and 

transformation parameters. However, if local models )(xT
i

 

are linear with respect to transformation parameters, 
transformation T(x) is also linear with respect to 
transformation parameters after membership functions are 
determined.  

In this study, we choose linear transformation for each 

region, i.e.
iii

bxAxT )( . We can rewrite the overall 

transformation (2) for the whole image in the following 
form: 

pxAxT
T

p
)()(              (4) 
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  is the total 

transformation parameters of )( xT , 
Ti

p is the 

corresponding 12 parameters ),(
ii

bA  of )(xT
i

.  

Note that transformation T(x) is linear with respect to 

parameters p. Combined with 3D curves, point marks and 

strain energy, this linearity leads to fast analytical solution 

when these three energy terms are taken into account. 

C. 3D Curve Representation Using B-Spline 

The centerlines of blood vessels are extracted from MR 
liver images in the form of discrete points. In order to 
effectively employ these 3D curves as constraints in image 
registration, we need a continuous and smooth 
representation. In this study, we express vessel centerlines as 
parametric 3D curves using the 2

nd
 order B-Spline. This 

representation leads to an analytical solution to the closest 
point on the curve given a transformed point of fixed curves. 
Note that we only need a continuous representation for 
centerlines in the moving image, but not for those in the 
fixed image.  

The i-th vessel centerline in the moving image )(tC
mi

 is 

represented as three 1D parametric B-Spline curves. 
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where t is the parameter, can be selected to represent the 

curve length between current coordinates )(tC
mi

 and the 

vessel starting point, 
mi

N is the number of discrete points on 

the i-th vessel centerline extracted from MR images, 

),,(
0*1*2* kmikmikmi

CCC  are constants for the i-th curve. 

D. Minimization of 3D Curve Energy 

In this section, we propose a novel technique to 
analytically calculate the closest point on a 3D curve to a 
given point, and the derivative of the shortest distance 
between pairs of curves with respect to transformation 
parameters through a parametric representation of 3D curves. 

Vessel centerlines can provide reliable constraints during 
the image match process. To make use of vessel centerlines, 
we aim to minimize the distance between pairs of 
corresponding vessel centerlines, which is formulated as the 
following optimization problem: 
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where 
C

N is the total number of vessel centerlines, 
Ci

N the 

number of discrete points on the ith centerline from the fixed 

image, 
CiCfik

NkNiX ,,2,1,,,2,1,   is the k-th point on 

the i-th centerline from the fixed image, )(tC
mi

 the 

continuous parametric representation of the i-th vessel 

centerline from the moving image. For simplicity we limit 

our discussion to finding the closest point on a 3D curve in 

the moving image for a transformed point of the fixed image.  
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From (5), we can rewrite the above )( pE
cik

 in the form: 
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Given the parameters (
c

p ) of current transformation 

)( xT  and 
fik

X  on the fixed centerline, we first 

compute )(
fikTfik

XTX  . Next, we find the closest point 

)(
cmikmicmik

tCX   on vessel curve )(tC
mi

 such that the 

corresponding optimal parameter 

2
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2

1
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The optimal solution 
cmik

t  is obtained by analytically 

solving the following cubic polynomial equation: 
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Tfikddt

dE cik  given
Tfik

X . As we 

know, there exists an analytical formula to calculate the roots 
of cubic polynomials. If we choose a parametric 
representation of 3D curves with cubic B-Spline, we need to 
solve a 5-th order polynomial equation 0

dt

dEcik . 

Unfortunately, no analytical solution exists in this case.  This 
is the reason why we select the 2

nd
 order of B-Spline to 

represent vessel centerlines so that we achieve a good 
balance between smooth curves and efficiency. 

Because 
cmik

t  is a function of 
Tfik

X  and 
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the corresponding partial derivatives of t with respect to 

transformed discrete points 
Tfik

X  are calculated as follows. 
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Now we derive an analytical formula to compute the 

derivative of )( pE
c

 with respect to transformation 

parameters p. 
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Note that 
p

pEc



 )(
 is a linear function of parameters p, which 

implies that the shortest distance between curves )( pE
c

 is a 

quadratic function of transformation parameters p. 

E. Minimum Strain Energy 

The strain energy term prevents the issue of overfitting, 

and leads to physically consistent deformable match results. 

The strain energy )( xE
e

 is generated by deformation of soft 

tissues based on elastic solid mechanics, and can be 

calculated using the Saint-Venant model [8] as follows: 
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From (4), we can write strain energy density as a 

quadratic function of the parameters p of our proposed 

neuro-fuzzy transformation model in the following formula: 
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Therefore, we obtain a quadratic form of strain energy: 
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where constants ),,(
210 eee

CCC can be calculated offline in 

advance based on the pre-operative image.  
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The explicit derivative of strain energy with respect to 

transformation parameters p is calculated as follows. 
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F. Point Marks 

Point marks are employed to anchor the deformation at 

some specific locations. Point marks such as bifurcations 

provide the most robust and efficient way to obtain correct 

registration. We assume that there are 
m

N  pairs of 

corresponding point marks (i.e. bifurcation points), 

 
mmkfk

NkXX ,,2,1,,  . Then we minimize the distance 

between corresponding point marks by adding the following 

term to the registration energy function,  
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Its derivative with respect to transformation parameters 

can be analytically calculated through the following formula, 
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G. Analytical Optimal Solution Subject to Constraints of 3D 

Curves, Marks and Strain Energy 

To obtain the optimal solution, 3D curves, point marks, 

and strain energy are employed to register the two images, 

and we set 0
im

w in (1). The other three terms are 

quadratic functions of transformation parameters p. 

Therefore, the global optimal transformation parameters can 

be calculated analytically by solving linear 

equations 0 pJ  . 

This fast analytical solution can be used to dynamically 

update guidance vessel models for vessel extraction. It is 

expected to greatly improve the quality of vessel 

segmentation under the guidance of pre-operative vessel 

models in a joint registration and segmentation framework. 

This fast solution can be employed to initialize intensity-

based image registration to the neighborhood of correct 

match. We expect that it would significantly reduce the 

probability of getting trapped in local minima. 

III. REGISTRATION RESULTS 

All of the images used in this study were acquired from 
human volunteers. High-quality dynamic MR images were 
acquired in the axial plane using a 1.5T GE scanner (GE 
Medical Systems, Milwaukee, WI). Image acquisition was 
performed using the LAVA gradient echo sequence with 
TR=3.79 ms, TE=1.72ms, a flip angle of 12 degrees, an 
image matrix size of 256 x 256, in-plane pixel size of 1.3 
mm x 1.3 mm and slice thickness of 1.5 mm. Image sets were 
acquired with a breath-hold at different positions. 

The selected overlays of the centerlines after registration 
are shown in Fig. 1 using 10 sub-models, which demonstrate 
that the centerlines are matched well after registration. To 
quantitatively evaluate the registration accuracy, we 
calculated two accuracy metrics: target registration error 

(TRE) and average centerline distance (ACD). The resulting 
average TRE of 56 bifurcation points was 1.98 mm, and the 
average ACD of 111 vessel branches is 1.65 mm. These 
registration accuracy measures have demonstrated that the 
proposed deformable registration technique is able to 
accurately register two sets of images.  

 

    

Figure 1.  Overlay of centerlines after match. Red lines: left lateral 

decubitus, yellow lines: supine mapped to left lateral decubitus. 

IV. CONCLUSION 

We have presented a new approach to the registration of 

deformable liver images, which significantly reduces the 

number of transformation parameters in the proposed neuro-

fuzzy model, and a fast analytical global optimal solution 

when considering 3D curves, point marks and minimum 

strain energy. Since the speed of registration is 

approximately proportional to the number of parameters, the 

proposed method has the potential to dramatically accelerate 

intra-operative image registration, making intra-operative 

image guidance possible in many abdominal and thoracic 

procedures.  

Future work includes automatic extraction and match of 

vessel centerlines under joint extraction and registration 

framework, and more validation on clinical data and 

different MR contrasts. 
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