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Abstract— Cerebrospinal fluid pressure (CSFp) provides 

vital information in various neurological abnormalities 

including hydrocephalus, intracranial hypertension and brain 

tumors. Currently, CSFp is measured invasively through 

implanted catheters within the brain (ventricles and 

parenchyma) which is associated with a risk of infection and 

morbidity. In humans, the cerebrospinal fluid communicates 

indirectly with the ocular circulation across the lamina cribrosa 

via the optic nerve subarachnoid space. It has been shown that 

a relationship between retinal venous pulsation, intraocular 

pressure (IOP) and CSFp exists with the amplitude of retinal 

venous pulsation being associated with the trans-laminar 

pressure gradient (i.e. IOP-CSFp). In this study we use this 

characteristic to develop a non-invasive approach to estimate 

CSFp. 15 subjects were included in this study. Dynamic retinal 

venous diameter changes and IOP were measured and fitted 

into our model. Artificial neural networks (ANN) were applied 

to construct a relationship between retinal venous pulsation 

amplitude, IOP (input) and CSFp (output) and develop an 

algorithm to estimate CSFp based on these parameters. Results 

show a mean square error of 2.4 mmHg and 1.27 mmHg for 

train and test data respectively. There was no significant 

difference between experimental and ANN estimated CSFp 

values (p>0.01).This study suggests measurement of retinal 

venous pulsatility in conjunction with IOP may provide a novel 

approach to estimate CSFp non-invasively.   

 

I. INTRODUCTION 

The retinal venous pulse came to the interest of researchers 

in late 19
th

 century [1]. Harder and Jonas [2] observed the 

presence of these spontaneous pulsations in 90% of 384 

subjects tested. They recommend that that they could be a 

good indicator of cerebrospinal fluid pressure (CSFp) and 

suggested that patients reporting to a clinic with a lack of 

pulsation had a 90% chance of an abnormality..  

The first theory explaining the nature of these pulsations 
was suggested by Balliart and Elliot [3], [4]. They suggested 
that for a given cardiac cycle, intraocular pressure (IOP) 
exceeds the pressure inside the central retinal vein (i.e. retinal 
venous pressure (RVP)) during ventricular systole hence 
forcing the vein to collapse. During diastole, RVP exceeds 
IOP resulting in re-expansion of the vein. Based on this 
theory two further issues were raised. Firstly, RVP could be 
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higher or lower than IOP and secondly the fact that pressure 
fluctuations in either one of these parameters does not 
necessarily transmit to another. 

Recent findings [5–7] have all measured RVP and IOP at 
several levels of IOP and shown that RVP consistently 
exceeds IOP. 

A more recent explanation for the nature of spontaneous 
retinal venous pulsatility (SRVP) is provided by Levine [8]. 
He suggests that during an increase in CSFp, CSF pulsations 
and the mean CSFp rise [9] and approach the intraocular 
pulse pressure resulting in a zero intravascular pressure 
gradient over the prelaminar and retrolaminar optic nerve, 
leading to cessation of the retinal venous pulsation. These 
findings have been confirmed by other studies [10–13]. 

Based on this characteristic, we have developed [14–16] a 
new approach to quantify and estimate CSFp values. Our 
proposed method is based upon the fact that the degree of 
SRVP is associated with the trans-laminar pressure gradient; 
the pressure difference between IOP and CSFp. An increase 
in trans-laminar pressure gradient will raise SRVP amplitude 
while a drop in the mount of this pressure difference will lead 
to lower SRVP amplitude.  

The objective of this study is to provide a model to map 
IOP and SRVP amplitude values onto estimated CSFp 
values.  For this purpose, an artificial neural network (ANN) 
with a multi layer perceptron structure was used. The error 
between estimated output and actual output is minimized, 
hence firm relationships between input and output variables 
are constructed.  

II. MATERIAL AND METHODS 

A. CSFp estimation 

The Dynamic Vessel Analyzer (DVA,Imedos, Germany) 

was used to record SRVP amplitude. IOP was measured 

using Goldman tonometry and SRVP recorded for 20 sec. A 

single drop of aproclonidine 0.5% (Alcon) was administered 

to lower IOP measured at 15,30,45 min intervals. 15 min 

intervals were chosen based on the fact that aproclonidine 

0.5% will lower IOP gradually. This was followed by a 20 

sec recording of SRVP.  

Peaks and troughs were determined from SRVP 

recordings at each cardiac cycle. SRVP pulse amplitude was 

obtained by subtracting the trough from detected peaks at 

each cardiac cycle. These measurements were designated as 

the SRVP pulse (SRVPp).  SRVPp at each cardiac cycle (cc) 

is defined as: 

 

              SRVPp = (Peak SRVP) - (Trough SRVP)             (1) 
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SRVPp was plotted against IOP levels as 15 min 

intervals. Assuming a constant central retinal venous pressure 

and according to our proposed method and other studies [8], 

[10], [14], SRVPp is associated with the pressure difference 

between IOP and CSFp which could be expressed as: 

 

       (        ) 
            (        )                     (2) 

 

Where a is a constant. According to Equation (2), when 

SRVPp cease to be present (i.e. SRVPp=0), then: 

 

  (        )      
                                                                              (3) 

 
Relationship between IOP and SRVPp at 15 minute intervals 

is shown in Figure 1. In order to model the phenomena 

described in Equation (3), linear regression has been applied 

to these plots to estimate the intercept point of the regression 

line with  the x-axis (i.e. IOP) to determine SRVPp=0. More 

detailed description of CSFp estimation is provided in our 

previous studies[14–16]. Furthermore, these estimations have 

been validated against different approaches.   

 

 
 
Figure 1. Relationship between SRVPp and IOP at 15 minute 

intervals for a single subject. Each dot represents SRVPp at a single 

cardiac cycle for a period of 20 seconds. Solid line is the linear 

regression applied to the data in order to extract its intercept with x-

axis (i.e. IOP). Dashed lines show 95% confidence level.  

 

B. Artificial Neural Netwok 

As described in the previous section, CSFp estimation 
includes extracting a relationship between IOP and SRVPp at 
15 minute intervals in order to apply linear regression and 
estimate CSFp. However, this experiment takes 1 to 1.5 hours 
and may be uncomfortable for some subjects, specifically in a 
clinical environment when prompt access to different 
physiological parameters is vital. Therefore to shorten the 
experimental time and expedite CSFp estimations we 
developed a new model based on Artificial Neural Network 
(ANN).  ANN’s are capable of extracting a pattern between 
their inputs and their outputs. Based on these learnt patterns, 

they are able to estimate the desired output for any given 
input.  

The network is established based on the data acquired 

from 15 subjects.  ANN’s are viewed as a general 

framework for representing non-linear mappings between 

multi-dimensional spaces where the form of mapping is 

governed by a set of adjustable parameters. With supervised 

learning, the training data set consists of both the input to the 

ANN and an associated target output. In this study, the input 

is the IOP and baseline mean SRVPp recorded from each 

individual at any given cardiac cycle. The target output is the 

estimated CSFp extracted from the linear regression.  

The Multi-Layer Perceptron (MLP) regression ANN 

architecture was selected for this study. Every connection 

between inputs and neurons is weighted by an adjustable 

weight parameter. In addition, each neuron also has an 

associated, adjustable bias weight parameter. The network 

consists of a single hidden layer with 10 neurons. Ten was 

the number of neurons above which MSE (Eq.5) was 

constant within preset limits. In summary the network has a 

2-10-1 structure.  

If a is the input (i.e. mean SRVPp and IOP) to the MLP 

and b is the output (i.e. CSFp) of the MLP, a relation 

mapping the input to the output may be written as follows: 
 

   ∑    

  

   

       

                
 

     [ ∑      
 
   ]

            (4) 

where i (i=1,2) is the number of inputs units, j (j=1...10) is 

the number of hidden neurons,    is the i-th input unit,     is 

the weight parameter between input i and hidden neuron j 

and    is the weight parameter between hidden neuron j and 

the output neuron.    is the activation function of the hidden 

layer (Figure 2).  

 

Figure 2. Schematic of ANN used for CSFp estimation based on 
IOP and mean SRVPp as its inputs 

C. ANN Validation 

The generalization error between ANN output and target 

output is quantified using a mean square error (MSE) 

criterion given by: 
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                        (5) 

Where N is the total number of test patterns,    is the target 

output for input pattern n and   , is the actual ANN output 

when presented with pattern n. 

III. RESULTS 

The average SRVPp ,CSFp and absolute IOP for all 15 

subjects are shown in table 1. CSFp using the experimental 

regression line and ANN has also been shown in this table. 

An iterative 12 train 3 test algorithm was used to update the 

ANN performance and minimize the error.  Based on this 

algorithm 12 random subjects were chosen to train and 

another 3 subjects were applied to the trained network to 

evaluate its performance (80% train, 20% test). The learning 

rate was 0.001 and the ANN was updated 1000 epochs to 

achieve a stable MSE.  

TABLE1.  AVERAGE SRVPP, EXPERIMENTAL AND ESTIMATED CSFP AND 

ABSOLUTE BASELINE IOP FOR ALL 15 SUBJECTS TESTED 

Subject 

No. 

Mean 

SRVPp 

(µm) 

IOP 

(mmHg) 

CSFp-

Experimetal 

(mmHg) 

CSFp- 

ANN
 

(mmHg) 

1 6.3  16 9.5 8.0 

2 14.2  12 5.6 5.7 

3 21.2  19 12.9 13.0 

4 5.6  12 10.9 7.1 

5 14.3  15 7.8 7.2 

6 4.4  12 3.9 5.0 

7 6.4  16 2.8 4.1 

8 5.8  13 2.6 5.0 

9 4.1  10 3.0 5.1 

10 20.1  14 4.8 7.0 

11 9.2  18 12.3 11.5 

12 10.2  15 6.6 6.3 

13 9.8  14 7.0 5.8 

14 6.1  15 6.8 5.5 

15 9.0  17 6.9 8.4 

 

The best mean square error achieved for the training data 
was 1.2 mmHg. This value was 2.4 mmHg for the test data. 
The train/test data were rotated iteratively until all 15 data 
sets were subjected to the ANN train and test pattern. ANN 
weights were updated accordingly until minimum MSE was 
achieved. Student t-test was applied between the two CSFp 
groups. Results show a non significant difference between 
experimental and ANN estimated CSFp (p>0.01). The 
average CSFp for experimental and ANN was 6.8 ±3.3 
mmHg and 6.9 ±2.4 mmHg respectively. 

The Bland-Altman test [17] was used to assess the 
agreement or any consistent bias between the two methods. 
The difference in mean CSFp between the two groups is 
plotted against the average of both groups. For data to be 

distributed normally (Gaussian), the difference in the mean 
should lie between µ-2ơ and µ+2ơ (dashed line-Figure 3), in 
which µ is the average of the difference (also known as the 
bias) and ơ is the standard deviation.  For the given data, µ is 
-0.04 and ơ is 1.7. Considering these values the upper and 
lower limit would be 3.31 and -3.39 respectively. (Figure 3).  

 

 
Figure 3. Bland-Altman test applied to depict the performance of 
the two methods (ANN and experimental) used to estimate CSFp. 
Y-axis is the difference between estimated CSFp from experimental 
data and the estimated CSFp using the ANN. X-axis is the average 
of these two parameters. 

 

IV. DISCUSSION AND CONCLUSION 

In this study we have proposed an artificial neural 

network algorithm firstly to estimate CSFp based on 

baseline IOP and SRVPp measurements and secondly to 

minimize the cumbersome experimental procedure needed to 

estimate CSFp, mainly described in our previous study.  

While further invasive experiments are required to 

validate these estimates, nevertheless we compared our 

findings with an alternative approach using software 

developed by Cambridge University known as ICM+. Our 

results were comparable and non-significantly different to 

those estimated by ICM+ for the same subject (p>0.01) . 

ICM+ uses arterial blood pressure waveform along with 

middle cerebral artery flow velocity in order to estimate 

CSFp. 

There may be the possibility of the effect of blood 

pressure or heart rate on the variability of SRVPp during 

administration of aproclonidine 0.5% to lower IOP. This has 

been justified in our previous study [14]. Neither blood 

pressure nor heart rate has indicated any direct affect on 

SRVPp as a result of aproclonidine 0.5% administration. 

Mean retinal venous and arterial caliber did not change 

either. 

Our results support the theory developed by Levine [8], 

where SRVPp are a result of the trans-laminar pressure 

gradient (i.e. IOP and CSFp). We have assumed a constant 

retinal venous pressure which also plays a vital role in the 

presence of SRVP. This assumption will not affect the 

overall results provided in this study since we have only 
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applied this method to normals. However, this has to be 

taken into account if subjects with neurosurgical or 

ophthalmic subjects are examined, where RVP may be more 

elevated or variable.  

Ophthalmodynamometry is a reliable technique to assess 

retinal venous pressure. Firsching [18] studied 22 subjects 

which had surgical procedures to place intraventricular 

catheters in their brain to measure CSFp. 

Ophthalmodynamometry was performed in these subjects in 

order to record venous outflow pressure (VOP).  Their 

results demonstrate a significant correlation between VOP 

and CSFp (p<0.001). These findings have also been 

confirmed by other studies [19], [20].  

Our study is limited by the small number of subjects. We 

acknowledge that the subjects chosen for this study were all 

normal and therefore a broader range of patients with 

neurosurgical or ophthalmic abnormalities should be 

recruited to assess the model’s applicability. Nevertheless, 

estimated CSFp in our model falls in the normal range (0-15 

mmHg)[21] supporting our proposed method. Further 

experiments are required to determine this relationship with 

SRVPp, IOP and CSFp and include in our described model. 

In conclusion, measurement of baseline SRVPp in 

association with baseline IOP and applying the proposed 

ANN model can provide a prompt initial assessment of 

CSFp values. All of our experiments are based on devices 

used in ophthalmology clinics and so this approach could be 

incorporated in these devices as a software plugin to provide 

information on CSFp.  
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