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Abstract— Muscle activity is followed by myoelectric poten-
tials. Prior estimation of motion by surface electromyography
can be utilized to assist the physically impaired people as well
as surgeon. In this paper, we proposed a real-time method for
the prior estimation of motion from surface electromyography,
especially in the case of wrist angle. The method was based
on the recursive processing of multi-layer perceptron, which
is trained quickly. A single layer perceptron calculates quasi
tensional force of muscles from surface electromyography. A
three-layer perceptron calculates the wrist’s change in angle. In
order to estimate a variety of motions properly, the perceptron
was designed to estimate motion in a short time period, e.g. 1ms.
Recursive processing enables the method to estimate motion in
the target time period, e.g. 50ms. The results of the experiments
showed statistical significance for the precedence of estimated
angle to the measured one.

I. INTRODUCTION

THE signal of surface electromyography, sEMG, pre-

cedes motion in the human body[1]. Prior estimation

of motion by sEMG can be utilized to assist the physically

impaired people as well as surgeon. Prior estimation en-

ables assisted motion for physically impaired people wearing

powered suits. Prior estimation may also be used to prevent

a surgeon from damaging important tissue, such as vessels

and nerves. Machine learning could estimate or classify the

motions of various people with training[2], [3], [4], [5]. A

multi-layer perceptron offers the benefits of high calculation

speeds compared to a support vector machine[8]. Previous

studies of estimating joint angles using a machine learning

with sEMG do not consider a mechanical response of the

muscle fiber to the electrical signal[2], [3].

In this paper, we propose a real-time method for the prior

estimation of motion by recursive multi-layer perceptron with

sEMG. The proposed method is the case of the prior esti-

mation of wrist angle. Finally, the possibility and accuracy

of the prior estimation are validated.

II. METHOD FOR PRIOR ESTIMATION OF

MOTION

The proposed method aims at estimating motion in ad-

vance of the actual motion. Quasi tensional force, which

approximates the tensional force of a muscle[9] as described

below, is estimated from sEMG. The wrist’s change in angle

is estimated from the quasi tensional force, wrist angle, and
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angular velocity. The features of the proposed method are as

follows:

• Initial weights based on the impulse response of muscle

fibers. Appropriate initial weights for the perceptron

are necessary for stable and quick training. The ini-

tial weights used by the perceptron to estimate quasi

tensional force are based on the impulse response of

muscle fibers.

• Recursive processing. In order to estimate a variety of

motions properly, the perceptron is designed to estimate

motion in a short time period, e.g. 1ms. Recursive

processing enables the method to estimate motion in the

target time period, e.g. 50ms. Because of its simplicity,

the model for a short time period responds to sEMG

flexibly and requires only a short training time.

A. Perceptron for wrist angle

The amount of the wrist’s change in angle at the forearm

∆θ is determined by the current wrist angle θ, wrist angular

velocity ω, and wrist torque τ . The wrist torque is determined

by the developed tension of muscles and the current angle.

The developed tension is determined by pseudo tensional

force F̂ and the amount of the muscle’s change in length

from the original length. Thus, the function is written:

∆θ = f(θ, ω, F̂ ) (1)

Equation 1 is not easy to represent as a concrete equation.

However, regression of the equation is possible using a multi-

layer perceptron. Fig. 1 illustrates a view showing a multi-

layer perceptron’s estimation of the amount of a wrist’s

change in angle after minute time increments. The perceptron

estimates the amount of wrist’s change in angle at time t+1
by using the information obtained at time t.
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Fig. 1. Perceptron to estimate a wrist’s angular change
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The training of the perceptron is carried out by inputting

quasi tensional force estimated from sEMG, wrist angle, and

wrist angular velocity at time t and using the amount of

angular change from time t to t+1 as a teacher signal. At the

training stage, regression is established with high precision

without pre-estimation.

B. Perceptron for quasi tensional force

sEMG can be assumed to represent an impulse, because

sEMG has a short response period compared to the tensional

force of a muscle fiber. The impulse response of a muscle

fiber is written in the following equation[7]:

F (t) = F0
t

T
e−

t
T (2)

where t is elapsed time from the impulse, T is the time

from the impulse to the maximum tensional force, F (t) is

the tensional force of a muscle fiber at time t, and F0 is

a constant specific to a muscle fiber. T varies from 20 to

120msec according to the type of motor unit[9]. T is shorter

when the fiber is fast muscle, while T is longer when the

fiber is slow muscle. In order to estimate quasi tensional

force accurately, the activity of the whole muscle have to be

estimated.

The perceptron for estimating tensional force is illustrated

in Fig. 2. This perceptron is a single-layer perceptron with

input and output layers.

F
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Fig. 2. Perceptron for estimating tensional force

The input data for the perceptron is the time-series abso-

lute value of sEMG in the period since previous sampling

time N . Quasi tensional force F̂ is written:

F̂ =

N∑

i=0

w
(1)
i |x[n− i]| (3)

where discrete sEMG at sampling time n is x[n], and the

weight of sEMG at sampling time n− i is w
(1)
i . The initial

weights of the links are derived from Equation 2, because the

response can be approximated by Equation 2. If the sampling

frequency is set to f , the weight w
(1)
i is set as,

w
(1)
i =

i

Tf
e−

i
Tf (4)

The quasi tensional force is regularized from 0 to 1 by

dividing the subtraction of force in the resting state from the

maximum force.

C. Whole perceptron for motion estimation

Fig. 3 illustrates the four-layer perceptron developed for

motion estimation, which consists of the perceptrons for

quasi tensional force and wrist angle. The perceptrons are

trained by backward propagation of errors.
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Fig. 3. Four-layer perceptron to estimate motion

The first layer is the input layer of the perceptron for quasi

tensional force. The second layer is the input layer of the

perceptron for wrist angle, which is the output layer of the

perceptron for quasi tensional force on the other hand. The

third layer is an intermediate layer and the forth layer is the

output layer of the whole perceptron. w
(1)
hi , w

(2)
ij , and w

(3)
j are

the weights between the first and second, second and third,

and third and forth layers, respectively. The output of the

perceptron and training signals, which are measured data,

are represented as y and r, respectively. xhi is the sEMG

signal. F̂i is the quasi tensional force calculated by Equation

3. The input and output of layer L are represented as a(L),

and z(L), respectively. Error is evaluated by the regularized

error function E(w) as shown in Equation 5.

E(w) = E(w) +
λ

2
w

T
w (5)

where λ(> 0) is a damping coefficient and w is the vector

of weights. The derivation of the error function by w
(3)
j is

solved analytically as follows:

∂E

∂w
(3)
j

= (y − r)z
(3)
j + λw

(3)
j (6)

The derivation of the error function by w
(2)
ij is

∂E

∂w
(2)
ij

= F̂i

∂h(a
(3)
j )

∂a
(3)
j

w
(3)
j (y − r) + λw

(2)
ij (7)
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where the function h is an activation function, such as

logistic sigmoid function. The derivation of the error function

by w
(1)
hi is solved by back-propagation as follows:

∂E

∂w
(1)
hi

= |xh|(y − r)
∑

j

w
(2)
ij w

(3)
j

∂h(a
(3)
j )

∂a
(3)
j

+ λw
(1)
hi (8)

D. Recursive processing for prior estimation

In the training stage, the perceptrons for quasi tensional

force and wrist angle are trained to estimate the amount of

angular change after 1 sample time. The precedence time

from the current to the target time is represented by T . The

prior estimation of wrist angle is conducted by recursive

estimation using the trained perceptron. As shown in Fig.

4, the state at t+ 1 is estimated by using the state at t, and

the state at t+2 is estimated by using the estimated state at

t+ 1. Finally, the state at t+ T is estimated.

tt t+Tt+T-1t+T-2t+1 t+2

Δθt+1 Δθt+2 Δθt+TΔθt+T-1

Fig. 4. Recursive estimation

III. EXPERIMENTAL SETUP

A. System

The system consists of the parts that measure sEMG,

the parts that measure wrist angle, and a computer. sEMG

is measured by an amplifier with electrodes (BA1104-CM,

TEAC)[6] and is acquired in the computer through an

A/D converter (AIO-163202FX-USB, Contec). Joint angle

is measured by a 3D pointer (PHANToM Omni, SensAble).

Fig. 5 shows the measurement system. Table I shows the

specification of the system.

Head Amplifier

Amplifier

Electrode

Earth

Electrode Clip 1-3

A/D Converter

Fig. 5. sEMG measurement system

TABLE I

SPECIFICATION OF THE SYSTEM

Amplifier

Manufacture Digitex Lab.
Model BA1104-CM
Gain 60dB

High-path filter 300Hz
Time constant 0.03sec

common mode rejection ratio ≥ 90dB
Noise ≤ 10µVpp

Head amplifier

Manufacture Digitex Lab.
Model BA-U411
Gain 20dB

Input impedance ≥ 10MΩ

Electrodes

Manufacture Nihon-denko
Model J-vitrode

Input impedance ≤ 3kΩ

A/D converter

Manufacture Contec Co., Ltd.
Model AIO-163202FX-USB

Resolution 16bit
Conversion speed 2µsec/ch

3D Pointer

Manufacture SensAble Technologies, Inc
Model PHANTOM Omni

Resolution 0.055mm
Max. sampling freq. 1kHz

Computer

CPU Intel Core2 Duo E7500 2.93GHz
Main memory 2GB

B. Condition

In the experiment, sEMG of superficial flexor muscle of

fingers and ulnar flexor muscle of wrist were measured as

palmer flexion with consideration of the order of contribution

of muscles for flexion.

Fig. 6 shows the electrodes attached to the right hand. Fig.

6(a) shows the electrodes used to measure the superficial

flexor muscle of the fingers and the ulnar flexor muscle of

the wrist. Fig. 6(b) shows the electrodes used to measure the

common digital extensor muscle. The ground electrode was

attached to the ulnae of the right elbow.

(a) (b)

Fig. 6. Attached place of measurement electrodes

Table II shows the parameters used by the perceptron to

estimate quasi tensional force. Estimation was carried out

by using time-series sEMG data with 400 sampling points,
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which were obtained 400msec before. The initial values of

the weights of the link were set to 50msec for T and 1000Hz

for f in Equation 4.

TABLE II

PARAMETERS OF QUASI TENSIONAL FORCE

Type of perceptron Single-layer

Amount of input nodes 400

Amount of output nodes 1

Activation function Logistic sigmoid function

Error function Regularized error sum of squares

Damping coefficient 10−6

Learning rate 0.01

Coefficient of inertia 0.3

IV. RESULTS AND DISCUSSION

A. Evaluation of training

Table III shows the average absolute error and standard

deviation of the estimated wrist angle compared with the

measured wrist angle for 5,000 sampling points over the

course of 5 seconds.

TABLE III

ERROR OF ESTIMATED WRIST ANGLE

Average of absolute error[rad] 0.019

Average of absolute error[deg] 1.085

Standard deviation of absolute error[rad] 0.022

Standard deviation of absolute error[deg] 1.236

B. Evaluation of pre-estimation

Prior estimation of wrist angle is carried out after five

minutes of training. Fig. 7 shows estimated wrist angle after

50msec in real-time. The cross correlation between estimated

and measured wrist angles were calculated. Fig. 8 shows

the cross correlation between estimated and measured wrist

angles. The average and standard deviation of the peak of

precedence in 22 measurements were 106.7 and 16.7msec,

respectively. The results showed statistical significance for

the precedence of estimated angle to the measured one. The

reason why the average precedence was more than 50msec is

that sEMG signals from some muscle fibers precede tensional

forces by more than 50msec.

V. CONCLUSION

In this paper, a method for prior estimation of wrist’s

change in angle using sEMG and a multi-layer perceptron

model was proposed. The part for estimating quasi tensional

force enabled the estimation of quasi tensional force with

high accuracy. The cross correlation between measured and

estimated the wrist angle using the proposed method showed

statistical significance for the precedence of estimated angle

to the measured one. The evaluation of the efficiency in

training and the development of a navigation system using

the proposed prior estimation method are future works.
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Fig. 7. Pre-estimation of wrist angle
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Fig. 8. Cross-correlation between pre-estimated and measured wrist angles
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