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Abstract— This paper presents a non-motor imagery tasks 
classification electroencephalography (EEG) based brain 
computer interface (BCI) for wheelchair control. It uses only 
two EEG channels and a better feature extractor to improve 
the portability and accuracy in the practical system. In 
addition, two different features extraction methods, power 
spectral density (PSD) and Hilbert Huang Transform (HHT) 
energy are compared to find a better method with improved 
classification accuracy using a Genetic Algorithm (GA) based 
neural network classifier. The results from five subjects show 
that using the original eight channels with three tasks, accuracy 
between 76% and 85% is achieved. With only two channels in 
combination with the best chosen task using a PSD feature 
extractor, the accuracy is reduced to between 65% and 79%. 
However, the HHT based method provides an improved 
accuracy between 70% and 84% for the classification of three 
discriminative tasks using two EEG channels. 

I. INTRODUCTION 

A Brain Computer Interface (BCI) provides an alternative 
solution for hands free wheelchair control to assist severely 
disabled individuals who are unable to move their body or 
head. Basically, to drive a wheelchair using a thought 
controller, at least three mental commands are needed to 
provide wheelchair steering control of turning left, turning 
right and moving forward [1, 2]. The backward command is 
not used here for safety reasons. 

In the current BCI state of the art, the EEG based system 
is popular due the advantages of being non-invasive, 
portable, low cost and having better temporal resolution. 
However, it has the disadvantage of a higher sensitivity to 
noise including ocular, muscular and electromagnetic noises. 
The noise problem can be reduced and the classification 
accuracy can be improved by using better computational 
intelligent methods in both features extraction and 
classification algorithms to extract high dimensional EEG 
features [3, 4]. 

Current BCI-EEG technologies focus on selective 
attention and spontaneous mental signal methods. P300 and 
steady state visual evoked potential (SSVEP) [5, 6] are 
examples of the selective attention method in which the user 
needs to pay attention to external stimuli whilst controlling 
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the wheelchair. Concentrating on the control of the 
wheelchair and the stimuli at the same time may prove 
difficult. This is not the case for a BCI system based on 
spontaneous mental signals given by the user without any 
external cues. A BCI based on event related 
desynchronization-synchronization (ERD/ERS) is an 
example of the spontaneous mental signal method which 
focuses on the motor imagery area by imagining hand, feet 
and tongue movement [7]. 

There is a possibility that individuals who are amputees 
or have been paralyzed for years may not be able to perform 
motor imagery mental tasks competently, so as an alternative 
solution, other non-motor imagery mental tasks could be used 
[8]. Several researchers have used mental imagery tasks such 
as imagination of non-trivial arithmetic multiplication, letter 
composing, figure 3-D rotation and visual counting [1, 9]. In 
addition, the non-motor imagery cognitive tasks of auditory 
imagery and spatial navigation have been found to provide 
good results for classification in pairs [8]. Variability in the 
EEG signal patterns across different subjects is another 
additional issue. Therefore the study of combining of non-
motor imagery mental tasks needs to be explored. 
Furthermore, for practical application, a system with less 
EEG electrodes is preferable to provide more portability and 
convenience.   

 This paper presents the development of classifications of 
non-motor imagery tasks for three wheelchair steering 
movements using only two EEG channels and a genetic 
algorithm based neural network. Two features extraction 
methods, power spectral density (PSD) and Hilbert Huang 
transform (HHT) energy are compared to yield the best 
features extraction method with improved accuracy.  

II. METHODS 

A. Data Collection 

This study was approved by the University of 
Technology, Sydney, Human Research Ethics Committee. 
Five able bodied subjects (3 males and 2 females) aged 
between 22 and 40 years participated in the experiment. 
Initially, a mono-polar EEG system from Compumedic with 
the sampling rate set to 256 Hz was used for the 
measurement with the electrodes positioned as shown in Fig. 
1 at locations C3, C4, P3, P4, O1, O2, T3, and T4. A 
reference electrode was placed at location A2 and location 
A1 as GND electrode as referred to the standard of 
international 10-20 system.  
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To keep the impedance level low and good electrical 
contact, prepping and EEG gels were applied on the scalp. 
The impedance was measured and maintained below 5 kΩ. 
Unnecessary movements and eye blinks were kept to a 
minimum. A total of six mental non-motor imagery tasks 
were used in the study including: arithmetic (math) by 
imagining and solving simple multiplication; letter 
composing (letter) by mentally composing simple words; 
Rubik’s cube rolling (cube) by imagining a Rubik’s cube 
being rolled forward; visual counting (count) by mentally 
counting numbers from one to nine while visualizing each 
number  appearing and disappearing on a blackboard; 
ringtone (tone) by imagining a familiar mobile ringtone; and 
spatial navigation (navigate) by moving around and scanning 
the surroundings in a familiar location in the mind. 
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Figure 1.  EEG system set-up for data collection 

B. Pre-Processing  

A moving window segmentation of one second is used 
with overlap of every quarter second segment to give a result 
in 45 overlapping segments for 12 seconds data in 10 session 
recordings for each mental task. Therefore each subject 
provides data around 45×10 or 450 units per task. Next, 
digital signal processing (DSP) filters are employed to 
improve raw signal quality. These consist of a Butterworth 
band-pass filter with a bandwidth of 0.1 Hz to 40 Hz 
followed by a Butterworth notch filter at 50 Hz. 

B. Features Extraction  

For the features extraction, two methods are compared to 
provide a suitable features extractor for non-motor imagery 
task BCI. The first method is based on power spectral density 
(PSD). This is computed by squaring the fast Fourier 
transform (FFT) of each one second segment signal to 
convert the time based data into the EEG frequency bands. 

For the second feature extractor, the Hilbert Huang 
transform (HHT) [10] spectral density is used. This is based 
on a time-frequency analysis algorithm and is a good 
candidate for analyzing non-linear and non-stationary data as 
recorded by EEG. Basically, the HHT consists of two main 
processes: empirical mode decomposition (EMD) and Hilbert 

Huang transform. The EMD decomposes a time series data 
into amplitude and frequency modulated signals which are 
sets of intrinsic mode functions (IMF). Each IMF should 
satisfy two conditions: the extrema and zero crossings 
numbers should equal or differ by one and each have a zero-
mean envelope of local maxima and minima. The EEG signal 
can be reconstructed as follows: 
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where x(t) is EEG data, ci(t) denotes the ith extracted 
empirical mode and rn(t) the residual, which is a monotonic 
function without extrema and can be the mean trend or 
constant. The EMD algorithm is summarized as follows:   1) 
identify extrema (minima and maxima) of x(t); 2) generate 
the upper and lower envelope based on interpolation between 
maxima and minima; 3) compute the average of the two 
envelopes, m(t); 4) extract the IMF component by c(t) = x(t) 
– m(t); 5) if c(t) does not satisfy the properties of  IMF, 
replace x(t) with c(t) and repeat from step 1, and if it does, 
take c(t) as a IMF and evaluate the residue    r(t) = x(t) – c(t); 
6) repeat from step 1 to 5 by shifting the residual until the 
stopping criterion is satisfied. 

The Hilbert transform (HT) is applied to each IMF to 
obtain the Hilbert Huang amplitude spectrum (HHS) as 
follows: 
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Where P indicates the Cauchy principal value and i = 1: n. 
The amplitude ai(t), the phase I(t) and the instantaneous 
frequency i(t) as shown as follows : 
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The signal, after calculating the HT on each IMF component 
can be expressed as follows: 
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Equation (6) provides the amplitude and the frequency of 
each component as a function of time. This frequency-time 
distribution of the amplitude is represented as the HHS. 

Each spectrum calculated from PSD and HHT is used in 
the range of EEG bands: δ (0-3Hz), θ (4-7Hz), α (8-13Hz) 
and β (14-30Hz). Next, the total energy of each frequency 
band is calculated by numerical integration of the spectrums 
over that band using the trapezoidal rule method. With the 
energy over four bands calculated for each of the 8 channels 
(C3, C4, P3, P4, O1, O2, T3 and T4), 32 total power levels 
are made available for 8 channels and 8 total power levels if 
two channels are used. Additionally, the power difference of 
the asymmetry ratio in each spectral band [9] is also 
calculated with the equation as follows: 

   dif R L R LP = P P P P     (7)

where Pdif is the power difference on each band, PR  is the 
power level of a particular band on the right channel and PL 
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is the power level of a particular band on the left channel. 
The total of 64 spectral power differences (4 pairs of 
channel × 4 combinations on channel x 4 bands) is 
calculated for an 8 channel EEG. As a result, a total of 96 
units of features are extracted on each one second segment. 
For a two channel EEG, 4 spectral power differences are 
calculated resulting in a total of 12 units of features. 

B. Classification 

The  artificial neural network (ANN) as a classification 
method, is a widely used tool in biomedical applications [11]. 
This study utilizes a 3-layer feed forward neural network 
with one hidden layer network as shown in Fig. 2. In this 
study, a log-sigmoid function is assigned as the activation 
function which provides data values between one and zero. 
As a result, prior to the ANN the feature data value needs to 
be scaled to within a zero to one range. 
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Figure 2.  Neural network architecture 

The Genetic Algorithm (GA), one of the evolutionary 
algorithms (EA) is use to optimize the neural network 
training. A population of chromosomes is initialized at the 
beginning and evolves with each generation of iteration in the 
following procedure: 1) two parents are selected from the 
population of chromosomes based on the selection operation 
with the probability of selection proportional to their fitness 
value; 2) after applying the crossover and mutation operation, 
a new offspring is generated from these parents. This is 
governed by the probabilities of crossover and mutation; 3) 
the population generated replaces the current population. 
These procedures are repeated until  a termination condition 
is satisfied such as a predefined number of iteration [12].  

III. RESULTS 

The features dataset per subject consists of 450 units for 
each mental task and 1350 for the total of 3-tasks 
classification. This is divided equally between the training set 
and the testing set. The number of hidden neurons used for 
each subject is varied in order to find the best number that 
provides the highest fitness value to achieve the highest 
accuracy. The population size used for the GA is 50 and the 
training is stopped when the training of the neural network 
reaches up to 2000 iterations. The probability for crossover is 
set at 0.8 and the probability of mutation is set at 0.1 for the 
GA based neural network training. 

At first, neural network training with the GA optimization 
is applied to an 8 channel EEG (C3, C4, P3, P4, O1, O2, T3 
and T4) with the 96 input features derived from the PSD 
energy method. Fig. 3 shows the results of accuracies of five 

subjects for the three tasks classification of any combination 
from six non-motor imagery tasks (math, letter, cube, count, 
tone and navigate). 
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Figure 3.  Accuracies of 8 channels EEG classifications for 5 subjects 
based on PSD features extractor 

The result indicates a variation in the value of the 
classification accuracy across different subjects as the inter 
subject variability changes. Each subject has its own favorite 
triplet mental task combination which yields the highest 
classification accuracy between 76% and 85% using the PSD 
energy features extraction method. Subject 1 has the best 
accuracy at 82% with the combination of mental letter 
composing, ring-tone and spatial navigation. Subject 2 has 
the highest accuracy at 84% with the combination of 
arithmetic, counting and spatial navigation. Subject 3 
archived accuracy at 76% of best triplet tasks with arithmetic, 
letter composing and spatial navigation. Subject 4 has the 
best classification accuracy between mental Rubik’s cube 
rolling, visual counting and familiar ring tone imagery with 
accuracy at 85%. Subject 5 has the best accuracy at 81% 
between mental arithmetic, letter composing and Rubik’s 
cube rolling.  

Next, the number of EEG channels is reduced from eight 
to two channels. GA-NN training is performed based on the 
chosen mental task for each subject. Two features extraction 
method, PSD and HHT are compared to give a better features 
extraction algorithm. The result for the two channels 
combination of the chosen subject specific task is provided in 
Table I. To give the best accuracy, each preferable task on 
different subjects has the difference of the best two channels. 
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In detail, subject 1 with the chosen triplet task (letter-
tone-navigate) has the best accuracy using O1-T4 pair with 
improved accuracy from 65% (PSD) to 77% (HHT). Other 
option is at T3-T4 with improved accuracy at 75 % (HHT). 
Subject 2 with the chosen task (math-count-navigate) also 
provided an improvement of best accuracy from 67% (PSD) 
to 71% (HHT) using C3-T4 and optional P3-T4 with 
improved accuracy to 70% (HHT) from 65 % (PSD). Subject 
3 with chosen triplet task (math-letter-navigate) has best 
improved accuracy if using HHT with pairs: C3-T4 at 71% 
from 69% (PSD). Subject 4 has more channel pairs with 
accuracies above 70% including C3-T4, P3-T4, O1-T4 and 
T3-T4. The best pair is O1-T4 location with improved 
accuracy at 79% using the HHT compared to PSD at 77%. 
Subject 5 also has more channel pairs and an improved 
accuracy using HHT method such as: C3-O2, C3-T4, P3-O2, 
O1-O2, O1-T4 and T3-O2 with the best accuracy at 84% 
(HHT) improving from 79% (PSD) using O1-T4 channel. 

Generally, the resulting accuracies with only two 
channels for five subjects using PSD is lower than the 
original 8 channels classification at values between 65 % and 
79%. However, by using the HHT based feature extractor, 
these accuracies are improved with values between 70% and 
84% across five subjects with two channels. 

IV. CONCLUSION 

Two-channel mono-polar EEG classification has been 
successfully applied as a replacement to the original eight 
channels to discriminate three mental non-motor cognitive 
tasks tested for five subjects. As a result, two EEG channels 
with fewer electrodes provide more portability and more 
convenient setting-up in the practical BCI wheelchair 
control especially for severely disabled individuals. The 
original eight channels classification resulted in accuracies 
between 76% and 85%. With two channels, the accuracy 
using PSD features was between 65% and 79%. Moreover, 
the HHT based feature extraction method provides a better 
performance compared to the PSD-FFT based method with 
an improved accuracy between 70% and 84%. 
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TABLE I.  ACCURACIES OF 2 CHANNELS EEG CLASIFICATIONS FOR 5 SUBJECTS  

BASED ON PSD AND HHT FEATURES EXTRACTOR 
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S1 
Letter(2) - Tone (5) - 

Navigate (6) 
PSD 53 53 48 56 51 51 53 59 55 59 57 65 57 58 57 70 
HHT 54 56 56 72 57 57 56 73 56 61 58 77 57 59 58 75 

S2 
Math(1) - Count (4) - 

Navigate (6) 
PSD 48 51 54 67 43 48 57 65 47 51 59 67 52 51 60 66 
HHT 48 52 54 71 47 52 54 70 49 56 58 68 51 55 58 68 

S3 
Math(1) - Letter (2) - 

Navigate (6) 
PSD 44 45 45 69 48 47 46 64 45 43 46 65 48 49 52 67 
HHT 52 52 49 70 51 52 49 66 46 48 46 64 51 53 53 66 

S4 
Cube(3) - Count (4) - 

Tone (5) 
PSD 51 50 61 68 52 57 64 72 61 67 58 77 53 50 64 68 

HHT 51 49 60 72 54 55 65 73 68 68 68 79 50 51 63 70 

S5 
Math(1) - Letter (2) - 

Cube (3) 
PSD 48 49 69 62 47 49 71 60 65 64 73 79 47 52 68 58 
HHT 54 56 74 71 51 55 75 66 69 69 78 84 53 55 75 64 
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