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Abstract— Management of respiration induced tumor motion 

during radiation therapy is crucial to effective treatment.  

Pattern sequences in the tumor motion signals can be valuable 

features in the analysis and prediction of irregular tumor 

motion. In this study, we put forward an approach towards 

mining pattern sequences in respiratory tumor motion data. We 

discuss the use of pattern sequence distributions as effective 

representations of motion characteristics, and find similarities 

between individual tumor motion instances.  We also explore 

grouping of patients based on similarities in pattern sequence 

distributions exhibited by their respiratory motion traces.  

 

I. INTRODUCTION 

Respiratory motion causes significant errors in dose 
delivery to tumors in the thorax and abdomen. Such errors 
reduce the efficacy of radiation therapy due to the fact that 
tumors may receive less than prescribed dose (thereby not 
achieving the desired cell-kill) or normal tissue and critical 
organs may receive more than intended dose (thereby 
causing excessive radiation-related toxicity). Effective 
management of respiratory motion is key to achieving the 
clinical goals of thoracic and abdominal radiotherapy.  

While a large body of research exists on respiratory 
tumor motion prediction and management [1][5], one aspect 
that has not received as much attention is the personalization 
of respiratory management strategies based on rigorous 
analysis and profiling of respiratory patterns.  The intrinsic 
characteristics in respiratory motion offer a lot of 
information regarding the nature of motion in terms of 
regularity, motion range etc.  Since the motion of thoracic 
and abdominal tumors is heavily influenced by respiration, it 
is fairly obvious that a person’s breathing patterns would be 
reflected in the tumor motion traces. If we assume that 
patients with similar breathing styles and patterns may be 
addressed as a type or profile, and would exhibit similar 
irregularities in tumor motion, then physicians may develop 
customized motion-management and treatment plans to 
address each such patient profile.  

In this work, we study intra- and inter-patient respiration-
induced tumor motion patterns in order to (a) identify pattern 
sequences in the motion traces and (b) explore grouping of 
patients based on similarities of pattern sequences exhibited 
by their respiratory motion traces. We propose an approach 
to depict a motion signal in terms of the pattern sequences 
which constitute the signal.  We also discuss the use of 
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pattern sequence distributions in identifying similarities 
between motion signals.  Grouping of patients based on 
similarities between motion pattern sequence histograms and 
its validation is also explored. 

II. METHOD 

A. Dataset 

The respiratory tumor motion data used in this study is 
modeled by the CyberKnife Synchrony system [3] and is 
taken from the dataset created and documented by Suh et al 
[2] for 143 treatment fractions in 42 patients. The tumor 
motion is estimated from correlations between external on-
body markers and internal fiducial markers implanted 
around, or sometimes within, the tumor mass, and monitored 
using periodic stereoscopic x-ray imaging.  The data 
provides modeled 3D coordinate location of the tumor in 
time, documenting the tumor motion (in millimeters) along 
three dimensions – Superior-Inferior (SI), Anterior-Posterior 
(AP) and Left-Right (LR) – as a function of time, at a 
sampling rate of 25 Hz.  The validity of the estimated data 
has been discussed in previous works, with Seppenwoolde et 
al [4] finding the systematic error of position estimation to 
be less than 1 mm for all patients and mean 3D error to be 
less than 2 mm for 80% of the time.  The mean and standard 
deviation of the 3D position estimation root mean square 
error documented in the dataset is 1.5 ± 0.8 mm. 

According to the AAPM Task Group 76 [1], respiratory 
management techniques are required when the range of 
respiratory tumor motion is greater than 0.5 cm in any 
direction.  In the available dataset, the resultant motion 
calculated from individual coordinate data had a mean 
greater than 0.5 cm in 56 treatment fractions.  These 
constitute the data used in this analysis.  Basic motion signal 
statistics and ranges for these 56 instances are documented in 
Table I. 

 

TABLE I.  TUMOR MOTION DATA (STATISTICAL VALUES AND RANGES) 

Number 

of motion 

instances 

Peak-to-trough 

distance (cm) 

(Amplitude) 

Peak-to-peak time 

(sec) (Respiratory 

period) 

Mean SD Mean SD 

56 

0.79  

(0.51 - 

1.44) 

0.25  

(0.06 - 

0.73) 

3.91  

(2.52 - 

6.37) 

0.79  

(0.22 - 

1.73) 
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Two of the prominent types of irregular or anomalous 
motion for which respiratory motion management is 
necessary are (i) motion outliers – these can be described as 
periods of irregular motion involving substantial to extreme 
temporary displacement of the tumor about its mean 
position.  A special case of this can be an occasional lapse in 
inhalation or hypoxia leading to deep inhalation, and a 
possible irregular movement of the tumor; (ii) baseline shifts 
– these can be described as periods of irregular motion 
involving substantial displacement (temporary or permanent) 
in the mean position of the tumor.  Examples of both types of 
anomalies are illustrated in Figure 1. 

B.  Segmentation 

     This analysis borrows from the previous study based 
on this dataset by Suh et al [2], and builds on the 
segmentation proposed in it.  Individual respiratory cycles in 
a motion trace hold promise as primary units of analysis.  
Respiratory cycles not only enable pattern comparisons 
within a single patient’s tumor motion data, but also across 
multiple patients.  Therefore, motion information can be 
studied in terms of the features extracted from each of those 
cycles. The overall mean respiratory period is 3.8 seconds 
(calculated over 143 treatment fractions in 42 patients).  The 
sampling rate for the respiratory motion data is 25 samples 
per second.  Therefore, windows having a width of 100 
samples (~ 4 seconds) were chosen as appropriate units for 
feature extraction (See Figure 2). Windows were segmented 
such that consecutive windows have an overlap of 50%.  
Using an overlapping window segmentation approach 
ensures that any sequence of patterns present in the original 
signal is preserved by emphasizing the continuity 
information between two consecutively segmented windows. 

C.  Feature Extraction 

As is the case with any other time series data, representation 

and comparison of the patterns in the motion traces is heavily 

influenced by parameterization and feature selection.  In this 

study, a number of features have been experimented with.  In 

addition to statistical quantities such as mean and variance, 

features associated with the spatial and temporal 

displacement of the tumor, such as the respiratory period and 

the amplitude of motion were considered.  Respiratory 

motion is primarily periodic in nature, and the periodicity in 

the tumor motion is a direct measure of the regularity in the 

patient’s breathing. Frequency domain features have been 

included in the study to reflect the periodic characteristic in 

signals.  These features are derived by transforming the 

pattern window into the frequency domain using a fast 

Fourier transform (FFT).  Features such as spectral energy 

(sum of the squared FFT component magnitudes) and 

frequency-domain entropy (normalized information entropy 

of discrete FFT component magnitudes) were computed. 

 

Figure 1. Tumor Motion anomalies – Baseline Shifts 

(top) and Motion Outliers (bottom). 

 

D.  String encoding of motion signals 

  The windows are then subjected to a clustering routine 

resulting in groupings of windows based on similarities 

between the extracted features.  Since the features from each 

window represent the “pattern” in that segment of the signal 

that the feature window represents, each group would 

intuitively bring together signal segments exhibiting a similar 

pattern.  By the same argument, windows containing similar 

motion outliers can be expected to be clustered together.  

The cluster assignment is an indicator of the primary pattern 

characteristic exhibited by the member segments in a 

particular cluster. So, the cluster assignments can be mapped 

back to segments in the motion signal which belong to that 

cluster.  In other words, every motion signal can be encoded 

into a string of cluster assignments ordered in the same 

sequence as the windows they represent (See Figure 2).  k-

means clustering [6] was employed to cluster the feature 

windows extracted from the motion signals.  The process 

would result in each feature window receiving a cluster 

assignment from 1, 2, 3… to k.  The motion signals 

subsequently would be encoded into strings made up of these 

k characters.  We conducted the clustering using a k-value of 

5 clusters.  While neighboring k-values did not yield any 

substantial differences, higher values were not used due to 

computational complexity. 

  Each motion signal represented as a string is segmented 

into n-grams (all possible sets of n consecutive feature 

windows in terms of n consecutive cluster assignments).  

These n-grams represent a progression or sequence of 

individual patterns.  It is noteworthy that within each n-gram, 

every two consecutive windows represented by their cluster 

assignments would preserve continuity of the pattern 

sequence due to the overlap between the original segmented 

windows.  The significance of a pattern sequence is that it 

captures not only a pattern corresponding to a possible 

motion outlier, but also the patterns corresponding to the
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Figure 2. Illustration of the steps in the proposed method -- Segmentation, Feature Extraction, Clustering and String 

encoding of tumor motion signals. 

 

segments preceding and following a motion outlier.  This 

would help in preserving patterns sequences involving 

motion outliers that are prominent over a single motion trace 

or over multiple instances of tumor motion data.  In our 

experiments, we employed 3-grams or trigrams to segment 

pattern sequences. 

E.  Pattern Sequence Histograms 

 In order to study the distribution of different patterns 

sequences in a motion signal, pattern sequence histograms 

are generated.  These histograms can be used to examine the 

prominence of observed pattern sequences in the signal.  

Each bin in the histogram of a motion instance corresponds 

to a pattern sequence occurring in the motion signals, and its 

value is determined by its proportional contribution in the 

motion instance.  A pattern sequence histogram can be 

considered as a signature of the original motion signal itself, 

since the histogram represents the signal in terms of the 

patterns that constitute it, and each of the pattern sequences 

retain the temporal ordering of such patterns in the signal.  

Figure 3 presents the pattern sequence histograms 

corresponding to a few motion traces. 

F.  Uses of Pattern Sequence Histograms 

 The similarities between the generated pattern sequence 

histograms can be an effective indicator of a possible 

grouping among patients whose respiratory tumor motion 

traces might show similar characteristics.  We employ 

hierarchical agglomerative clustering to discover natural 

groups in the current dataset. This clustering approach 

begins with the individual motion instances and finishes with 

a single cluster, merging two similar groups in each iteration 

until all groups finally merge into one single group.  Using 

the Euclidean distance as the similarity measure, a 

hierarchical cluster tree or dendrogram is obtained (see 

Figure 4a) that illustrates the grouping or “linking” 

performed in every iteration, from bottom to top. The 

distance between two linked groups is computed as the 

distance between the centroids of the two groups, and is 

represented by the the height of the link that joins the two 

groups in the dendrogram.  

 

Figure 3. Sample Motion pattern sequence histograms in 

case of a 5-means clustering and trigram sequences. 

     

Figure 4. (a) Hierarchical cluster Tree for grouping 

pattern sequence histograms;(b) Variation of DB Index 

with number of clusters. 
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TABLE II.  STATISTICAL VALUES FOR EACH CLUSTER OF TUMOR 

 MOTION INSTANCES FORMED BY 

 HIERARCHICALCLUSTERING OF PATTERN SEQUENCE BINS 

Cluster 

Number 

Number 

of motion 

instances 

Peak-to-trough 

distance (cm) 

(Amplitude) 

Peak-to-peak time 

(sec) (Respiratory 

period) 

Mean SD Mean SD 

1 20 0.68 0.15 3.81 1.07 

2 9 0.77 0.18 4.41 0.89 

3 1 0.72 0 3.8 0 

4 1 0.87 0 3.4 0 

5 3 0.79 0.45 4.07 0.99 

6 3 0.79 0.09 4.1 0.98 

7 18 0.93 0.22 3.75 0.78 

8 1 0.53 0 3.5 0 

 

 The groups formed are validated using the Davies-

Boulding (DB) cluster validity index [7], which is based on 

the compactness and well-separation of the groups. An 

optimal clustering configuration is one that minimizes the 

DB Index value.  We study the validity for different cluster 

configurations, by observing the variation of the DB Index 

with the increase in number of resultant clusters from 2 to 10 

(Figure 4b).  The DB Index is found to be the most optimal 

for a configuration of 8 clusters, the statistics for which are 

presented in Table II.  Since the original dataset did not have 

any annotations for patient profile or type, validating the 

clusters based on specificity and sensitivity is not applicable 

here.  It would however be desirable to identify features in 

the biometrics and breathing characteristics that maximize 

correlations among motion instances belonging to the 

individual natural groups produced by the hierarchical 

clustering.  Such features can indicate the nature of possible 

classification or stratification of patients for personalization 

of respiratory management techniques. 

 The pattern sequence histogram over all the motion 

instances gives the overall prominence of pattern sequences.  

However, the discrimination between locally and globally 

prominent pattern sequences can be achieved by observing 

the bin-wise variance in the histogram values.  The globally 

prominent pattern sequences would occur in more number of 

motion instances and therefore would typically have lower 

variance values in their respective histogram bins.  This 

technique can be used to identify dominant pattern sequences 

consisting of motion outliers. A pattern sequence consisting 

of one or more motion outliers can be found to be prominent 

over a group of motion instances.  Motion outlier pattern 

sequences that are common among a group of patients could 

be identified and categorized.  Patients exhibiting a certain 

set of motion outlier pattern sequences in their respiratory 

motion data could also be studied for correlations in motion 

features. 

 Further studies can focus on the attributes addressed by 

pattern sequence histograms that can have application in 

patient profiling such as the prominence of pattern sequences 

in intra-patient and inter-patient data, the frequency of 

occurrence as well as the temporal distribution of the 

sequences along motion signals etc. These characteristics of 

patterns sequences can help identify their relevance to 

different groups of patients for whom personalized motion 

management and prediction techniques may prove beneficial. 

CONCLUSION 

 Identifying dominant pattern sequences in tumor motion 

data is valuable in studying and potentially predicting the 

occurrences of irregular motion of abdominal and thoracic 

tumor. To serve this purpose, we have presented motion 

pattern sequence histograms as an effective representation of 

pattern progressions in motion signals. Further research into 

the correlations between the respiratory motion features of 

patients exhibiting similar anomalous motion events would 

be helpful in recognizing groups among patients for whom 

treatment can be specialized. In addition to existing methods 

of respiratory tumor motion management, it is necessary to 

explore strategies that would enable physicians to stratify 

patients based on similarities in the respiratory motion 

features for personalized treatment and therapy. 
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