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Abstract— The metabolism and composition of lipids is of
increasing interest for understanding and detecting disease
processes. Lipid signatures of tumor type and grade have
been demonstrated using magnetic resonance spectroscopy.
Clinical management and ultimate prognosis of brain tumors
depend largely on the tumor type, subtype, and grade. Mass
spectrometry, a well-known analytical technique used to identify
molecules in a given sample based on their mass, can signifi-
cantly improve the problem of tumor type classification. This
work focuses on the problem of identifying lipid features to use
as input for classification. Feature selection could result in im-
provements in classifier performance, discovery of biomarkers,
improved data interpretation, and patient treatment.

I. INTRODUCTION

There are approximately 21,000 new cases of brain and
spinal cancer diagnosed in the United States each year,
and the overall five-year survival rate is estimated to be
34% [1]. For some types of brain cancer, however, the
median survival is less than two years [2], [3]. Clinical
management and ultimate prognosis depend largely on the
tumor type, subtype, and grade as evaluated by magnetic
resonance imaging (MRI) and tissue histopathology when
available. Biopsied or resected tumor tissue is classified
based on the type or subtype of progenitor cells promoting
neoplastic growth, and into risk grades II, III, and IV, based
on characteristic features of malignant proliferation [4], [5].
In this work we focus on the subtypes astrocytoma and
oligodendroglioma which present morphological features of
respectively astrocytes and oligodendrocytes of the glial cell
family in the brain. The survival profile of these subtypes
varies greatly, with astrocytoma presenting a higher risk of
malignancy as compared to oligodendrogliomas [1], thus
differentiation between these subtypes is of significance to
both direct patient care and research to improve treatments.
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The metabolism and composition of lipids is of increasing
interest for understanding and detecting disease processes
[6]. Lipid signatures of tumor type and grade have been
demonstrated using magnetic resonance spectroscopy [7],
[8]. In many gliomas, the phosphatidylinositol lipid pathway
is an important factor in cell growth due to mutation-driven
increases in the PI3 kinase enzyme activity, which impedes
normal apoptosis - mechanism of cell death.

Mass spectrometry (MS) is a well-known analytical tech-
nique used to identify molecules in a given sample based
on their mass. The analysis of the sample involves two main
steps: i) ionization, and ii) mass analysis. There are a number
of different ionization techniques, including matrix-assisted
laser desorption ionization (MALDI), and more recently,
desorption electrospray ionization (DESI). In MALDI-MS,
the sample is coated with a matrix, a light-absorbing organic
acid with low molecular weight. The ionization mechanism
in MALDI involves shooting an ultraviolet or infrared laser
beam to the compound. The matrix enhances the desorption
and ionization by absorbing the energy from the laser and
producing charged molecules, which in turn are analyzed by
the mass analyzer. The output of the mass spectrometer is
a spectrum indicating the mass-to-charge ratio (m/z) of the
molecule on the x-axis and its associated detected relative
abundance on the y-axis.

While MALDI-MS is capable of identifying molecules
with higher m/z values, the sample preparation limits
its translation to “real-time” application. In DESI-MS, the
ionization involves targeting the sample with a stream of
charged solvent droplets. The analyte (i.e., the sample to
be analyzed) molecules are taken up by the charged solvent
and are analyzed by the mass analyzer. DESI-MS is used
to analyze molecules with lower weights including lipids.
However, unlike MALDI-MS, where the desorption and
ionization are performed in the vacuum and involves sample
preparation, in DESI-MS the surface ions are produced in
ambient conditions requiring no sample preparation. This
property of DESI-MS could be extremely useful in clinical
applications, specifically during surgery, where it is critical to
analyze samples for specific biomarkers (e.g., possible traces
of cancer). In [9], authors discuss the application of DESI-
MS for intraoperative analysis of tumors for neurosurgery.

In mass spectrometry imaging, the sample is moved in the
x-y plane in the ionization source, and hence, can analyze
specific regions in the sample referred to as pixels. Note that
each pixel from the sample corresponds to a spectrum indi-
cating the relative abundance of different molecules in the
region defined by the pixel. In contrast to profiling molecular
distribution of tissue extracts, in mass spectrometry imaging
the morphological features in the tissue is preserved allowing
for visual comparison between the chemical composition of
the tissue and the heterogeneity and the infiltration levels
within the tissue.

Mass spectrometry and machine-learning have been used
for assessment of cancers from other organs as well as brain
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cancer. Ovarian cancer was correctly predicted from serum
samples analyzed with MS using classifiers based on peak-
probability and support vector machines [10], [11]. Prostate
samples have also been distinguished by similar techniques
[12]. In our previous work, we have used matrix assisted
laser desorption ionization MS (MALDI-MS) to classify pro-
gression of meningioma [13]. With a similar approach, post-
operative DESI-MS analysis showed utility to discriminate
gliomas along several axes of the histopathological criteria
used to assess tumor severity, namely type and grade [14],
[15].

This work focuses on the problem of identifying lipid
features to use as input for classification. Specifically, we
consider the feature selection problem for the classification of
astrocytoma and oligodendroglioma samples using their mass
spectrum. Feature selection could result in improvements in
classifier performance as well as in discovery of biomarkers
and improved interpretation of biological data. In the case
of tumor subtype classification, biomarker discovery allows
for an improved diagnosis and treatment.

II. CLASSIFICATION AND FEATURE SELECTION

In this section, we briefly review the support vector
machine (SVM) algorithm and a feature selection framework
which is closely related to SVM.

A. Support Vector Machine Algorithm

The support vector machine algorithm [16] is a sparse
kernel algorithm used in classification and regression prob-
lems. Here, we will briefly discuss the SVM framework
for the two-class classification problem. Let the training
set be given by x1, x2, . . . , xN , with target values given
by z1, z2, . . . , zN , respectively, where xn ∈ RD and zn ∈
{−1, 1}, n = 1, 2, . . . , N . Moreover, assume that this train-
ing set is linearly separable in a feature space RM defined
by the transformation φ : RD → RM ; that is, there exists a
linear decision boundary in the feature space separating the
two classes.

To classify a new data point x ∈ RD by predicting its
target value z define

y(x) , wTφ(x) + b, (1)

where w ∈ RM is a weight vector and b ∈ R is a bias
parameter. This representation can be rewritten in terms of
a kernel function as y(x) =

∑N
n=1 anznk(x, xn) + b, where

an, n = 1, 2, . . . , N , and b are parameters determined by the
training set xn and zn, n = 1, 2, . . . , N , and k(·, ·) is the
kernel function. The sign of the function y(x) determines
the class of x. More specifically, for a new data point x, the
target value is given by z = sgn(y(x)), where sgn y , y

|y| ,
y 6= 0, and sgn(0) , 0. In the SVM approach the parameters
w and b are chosen such that the margin, that is, the minimum
distance between the decision boundary and the data points,
is maximized. Hence, only a subset of the training data (i.e.,
support vectors) is used to determine the decision boundary.
It can be shown that the solution to the SVM problem
results in a convex optimization problem, and hence, a global
optimum is guaranteed.

In the case where there is an overlap between the two data
classes, the SVM algorithm can be modified by allowing
misclassification of data points. In this case the margin is
maximized while penalizing misclassified points. Such a
trade-off is controlled by a positive complexity parameter

C, which is determined using a hold-out method such as
cross-validation [16].

B. Recursive Feature Elimination

In this section, we briefly review a feature selection
algorithm referred to as recursive feature elimination (RFE)
which is based on the SVM algorithm. Although the RFE
framework can be applied to SVM with a nonlinear kernel
[17], here, we consider the SVM algorithm with a linear
kernel.

As discussed above, each data point x resides in a
high dimensional feature space RD, D � 1. However,
in studying biological data one observes a high degree
of correlation among the components of x. In addition,
x could contain components that do not contribute to the
classification problem and can be regarded as noise (i.e.,
uninformative features). Hence, it is desirable to select a
subset of components in RD and exclusively use them for
data classification. The process of selecting a subset of
components in the feature space is referred to as feature
selection. Feature selection could result in improvements in
classifier performance as well as in discovery of biomarkers
and improved data interpretation for biological data. In the
case of tumor subtype classification, biomarker discovery
allows for an improved diagnosis and treatment.

The feature selection problem for high dimensional data is
challenging. Using an exhaustive search method to identify
the optimal set of features subject to some model selection
criterion is computationally infeasible for high dimensional
feature spaces. In a framework proposed in [17], SVM is
used for feature selection by iteratively removing features
(i.e., components in the feature space) that are least informa-
tive for classification. Specifically, let w = [w1, . . . , wD]T

denote the weight vector in (1) identified by training the
SVM on the training set as discussed in Section II-A.
In the RFE framework, we define the feature index set
S1 , {1, . . . , D}, identify components which play the
“weakest” role in the SVM classification and recursively
eliminate features and the corresponding components in the
feature space from the data. Specifically, in iteration k,
the component ik , argmini∈Sk

w2
i is eliminated from the

feature space, where Sk is the feature index set in iteration
k. In the next iteration, the SVM algorithm is re-trained on
the modified training set and the process described above is
repeated. This process can be repeated until all features in
the feature space are eliminated or some termination criterion
is met. See [17] for a detailed discussion.

III. FEATURE SELECTION USING THE RECURSIVE
FEATURE ELIMINATION FRAMEWORK

In this section, we apply the RFE framework discussed in
Section II-B to the problem of classification of two glioma
subtypes, namely, astrocytoma and oligodendroglioma. The
data were collected from research subjects under approved
local Institutional Review Board protocol at the Brigham and
Women’s Hospital, Boston, MA. In this study, 29 glioma
samples were acquired from multiple research subjects, with
samples of astrocytomas and oligodendrogliomas and from
different grades between II to IV. Here, the term “sample”
refers to one piece of resected tissue and all the spectra
acquired from it.
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A. Preprocessing of DESI Mass Spectra

Each spectrum contains numerous peaks each correspond-
ing to a specific molecule or a set of molecules. However,
before using the spectra to classify tumor samples into two
different subtypes, preprocessing steps are necessary. First,
each spectrum is denoised using the undecimated wavelet
transform (UDWT). Then, the baseline artifact is estimated
and removed in the denoised signal [18].

Next, in the normalization step, individual spectra are
rescaled such that the area under the curve (also referred
to as total ion current) for all spectra correspond to some
fixed constant value. In the peak detection stage, peaks are
identified by locating local maxima in the denoised and
normalized spectra. The peaks indicate the presence of a
molecule or a fraction of the molecule in the region of the
sample corresponding to the spectrum, where its identity
can be determined by the m/z ratio. We used MATLAB
Bioinformatic Toolbox for preprocessing of spectra. See
[18–20] for a detailed discussion.

B. Peak Matching

Next, we discuss a feature extraction framework for mass
spectrometry data which is also referred to as peak matching
or binning. As discussed earlier, the m/z ratio of each
detected peak in a spectrum indicates the presence of a
molecule or a fraction of a molecule in the region of the
sample corresponding to the spectrum. However, the fact that
the mass spectrometer introduces a measurement error merror
introduces small shifts in the location of the peaks in different
spectra. As a result, prior to any form of analysis involving
a set of spectra, the peaks in different spectra corresponding
to the same molecule (with the same m/z value) need to be
matched.

In a standard technique in mass spectrometry data analysis,
the entire range of m/z ratios is partitioned into a set of
“bins” (each defined by an interval), where each bin is asso-
ciated with a unique molecule (or a fraction of a molecule)
with a given m/z ratio. Once the bins are identified, each
spectrum is revisited, and based on the m/z ratio of each
individual peak, the peak is assigned to one of the bins. Peaks
corresponding to the same bin are assumed to be associated
with the same molecule [18], [21]. This procedure can be
regarded as a feature extraction technique, where the bins
serve as features allowing peaks across different spectra to
be analyzed.

Here, we follow the mass clustering framework introduced
in [21] to identify the bins of variable size. The mass
clustering framework in [21], which is essentially a variation
of the centroid linkage hierarchical clustering algorithm
[22], considers each bin as a cluster of points, that is, a set
of m/z ratios. The algorithm starts by considering singleton
clusters (each m/z ratio is a cluster). Next, in each iteration,
new clusters are formed by merging clusters with minimum
inter-cluster distance. See [22] for a detailed discussion.
Note that contrary to the distance function given in [21],
where the measurement error is a function of the measured
mass, we use an absolute measure of distance to define
the mass distance function. This is due to the fact that the
mass analyzer used in this study has a measurement error
approximated to be constant for the m/z range between
200.08 and 1000.

C. Identified Features

Next, we apply the RFE framework presented in Sec-
tion II-B to the classification problem involving two glioma
subtypes, namely, astrocytoma and oligodendroglioma. Here,
we perform feature selection and concurrently evaluate the
classifier’s performance. In order to assess the performance
of the SVM classifier, a k-fold cross-validation method is
used [22]. Specifically, the collection of all available samples
is partition into k subsets. The SVM classifier is trained
on k − 1 subsets and tested on the remaining subset. This
process is repeated k times so that the classifier is tested on
all available partitions. In each run of cross-validation, the
RFE is applied to the training set.

For the mass spectrometry data set a total of 821 bins of
size less than 1 m/z were identified, that is, each spectrum
resides in a 821-dimensional space. The average accuracy
for the classification of astrocytoma and oligodendroglioma
mass spectrometry samples using an SVM classifier with a
linear kernel is given in Figure 1, where we used a 4-fold
cross-validation. We notice in Figure 1 that the classifier
performance starts degrading at iteration 680 of the RFE
framework. Note that the set of selected features by the
RFE framework is not necessarily the same in each run of
cross-validation. The set of features retained by the RFE
framework in iteration 680 for all 4 cross-validation runs
was chosen for further analysis.

TABLE I
RECURSIVE FEATURE ELIMINATION

Perform k-fold cross validation
Partition the data set {X,Z} into {X1, Z1}, . . . , {Xk, Zk}

FOR i = 1 : k DO
Training Set i ← {Xj , Zj}, j = 1, . . . , k, j 6= i.
Test Set i ← {Xi, Zi}
Initialize feature index set S ← {1, . . . , D}.
WHILE S 6= ∅ DO

Train the SVM algorithm using training set and features in S.
Compute the weight vector w = [wj ]j∈S .
Compute i = argminj∈Sw

2
j .

Remove i from the set S, i.e., S ← S\{i}.
END WHILE

END FOR

In order to identify significant features, a histogram of the
selected features (i.e., m/z values) for all 4 runs of cross-
validation is computed. The histogram is given in Figure 2
and a list of m/z values which have appeared at least 3 times
(out of 4 possible appearances) is given in Table II.
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Fig. 1. Average classification accuracy of the SVM classifier.

D. Discussion

In this section, we underline the significance of the
features selected in the classification problem involving
astrocytomas and oligodendrogliomas from a biochemical
perspective. Under the experimental DESI mass spectrometry
conditions used for tissue analysis, the majority of the
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Fig. 2. Histogram of the selected features identified by the RFE framework.

TABLE II
SELECTED m/z VALUES IDENTIFIED BY THE RFE FRAMEWORK

203 264.1 303.2 381.1 778.3 814.3 869.7 892.7
207.1 266.3 306.3 538.6 787.3 821.4 878.7 903.7
215.3 271.1 309.3 722.7 788.5 835.3 885.6 906.7
225.2 275.1 312.5 723.7 789.5 836.7 886.6 907.7
239.2 279.3 321.2 738.7 790.4 837.6 887.7 916.7
241.3 283.4 326.3 739.7 795.3 840.7 888.7 917.7
251.1 293.3 327.3 748.7 810.4 841.7 889.7 918.7
253.4 300.1 328.3 765.7 812.5 857.7 890.7 920.7
263.1 301.1 367.1 773.6 813.3 859.7 891.7 970.7

molecules extracted and detected constituted of free fatty
acids, corresponding dimers, and lipids. In previous work,
we identified some lipids that discriminated astrocytoma
grades by qualitative assessment of imaging spectra, but the
approach was limited for the assessment of glioma subtype
[14]. The general observation was that sulfatides appeared to
have discrimination power as they were typically observed
from astrocytomas and absent in oligodendriogliomas, but
their absence from astrocytomas grade IV prevented us from
drawing such conclusions.

In a follow-up study [15], we observed that the lipid
profile of a grade III astrocytoma contains lipid species
of all glycerophosphoserines (PS), glycerophosphoinositols
(PI), and sulfatides (ST) classes, whereas the grade III
oligodendroglioma shows a distinct profile of lipid species
with PS(40:4) m/z 838.3, and PI(38:4) m/z 885.5 present
at much higher relative abundances than observed in the pure
astrocytoma. Using a combination of in-house programs and
commercial software solution (ClinProTools), we were able
to classify subtypes of gliomas using SVM, but have found
considerable limitations in data pre-processing workflow
and feature selection. The approach presented in this paper
provides a solution to this problem by providing a framework
to systematically select relevant features for classification.
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