
  

 

Abstract— Poor quality of sleep increases the risk of many 

adverse health outcomes.  Some measures of sleep, such as sleep 

efficiency or sleep duration, are calculated from periods of time 

when a patient is asleep and awake.  The current method for 

assessing sleep and wakefulness is based on polysomnography, 

an expensive and inconvenient method of measuring sleep in a 

clinical setting.   

In this paper, we suggest an alternative method of detecting 

periods of sleep and wake that can be obtained unobtrusively in 

a patient’s own home by placing load cells under the supports 

of their bed.  Specifically, we use a support vector machine to 

classify periods of sleep and wake in a cohort of patients 

admitted to a sleep lab.  The inputs to the classifier are subject 

demographic information, a statistical characterization of the 

load cell derived signals, and several sleep parameters 

estimated from the load cell data that are related to movement 

and respiration.  Our proposed classifier achieves an average 

sensitivity of 0.808 and specificity of 0.812 with 90% confidence 

intervals of (0.790, 0.821) and (0.798, 0.826), respectively, when 

compared to the “gold-standard” sleep/wake annotations 

during polysomnography. As this performance is over 27 sleep 

patients with a wide variety of diagnosis levels of sleep 

disordered breathing, age, body mass index, and other 

demographics, our method is robust and works well in clinical 

practice. 

I. INTRODUCTION 

Poor quality of sleep has been linked to many adverse 
health outcomes.  For example, shorter sleep duration has 
been linked to increased risk of stroke and chronic disease 
[1], and also poor metabolic control [2].  Sleep disordered 
breathing – including obstructive and central sleep apneas -  
cause daytime drowsiness, decreased executive function,  and 
increased risk of cardiovascular disease [3, 4].  Periodic limb 
movements during sleep cause reduced sleep efficiency [5], a 
measure of quality of sleep.  As a result, studying sleep and 
identifying sleep disorders is important for treatment and 
improved health outcomes. 
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The current gold standard for studying sleep and 
assessing sleep disorders is polysomnography (PSG).  PSG is 
an overnight sleep study conducted in a sleep lab where a 
patient is hooked up to multiple devices measuring eye 
movements, electroencephalography (EEG), airflow, 
electrocardiography (ECG), and electromyography (EMG) at 
multiple locations.  Frequently, additional measurements are 
made based on the suspected diagnosis.  PSG has been 
widely and successfully used for both research and clinical 
applications, but has some serious shortcomings.  PSG is 
expensive, obtrusive (requiring a patient to be hooked up to 
many devices through electrodes and other interfaces), 
measures sleep in an unfamiliar and artificial environment, 
does not lend itself to longitudinal studies, and requires visual 
analysis and manual scoring/annotation by a trained expert 
for adequate data interpretation. 

To overcome some of the limitations of PSG, many 
groups have proposed both alternative methods of measuring 
sleep parameters of a patient in their own bed, and automatic 
scoring algorithms to assess different characteristics of sleep.  
The primary methods most often employed are based on 
instrumenting the patient or instrumenting the bed, although 
other methods have been used [6].  Actigraphy, the most 
common method of instrumenting a patient, relies on a body 
worn accelerometer or actigraph typically placed on the wrist 
[7, 8].  While actigraphy based sleep monitoring is used 
regularly in clinical practice, the method requires that the 
patient wear the device during sleep and requires that the 
patient keep records of the time they go to bed and get up in 
the morning.  For long term monitoring, regular charging of 
the device, regular downloading of the data captured by the 
device, and consistent device placement on the body are all 
required to prevent data loss and promote correct data 
interpretation.  In terms of instrumenting the bed, the static 
charge sensitive bed has been used extensively in 
Scandinavia to assess sleep unobtrusively in clinical studies 
[9]. This approach, which places a sheet between a 2-inch 
foam mattress and the bed platform, has had partial success 
in classifying sleep and wake periods [10]. However, no 
studies have used it with other types of mattresses, and in the 
United States, where 8-10 inch spring, memory foam, and air 
mattresses are common, other approaches are needed.  

Recently, a load cell based approach has shown 
considerable promise.  Typically, load cells are placed under 
the bed supports and measure the force applied at each 
support.  Load cell data has been successfully analyzed to 
classify breathing events [11], lying position [12], and bed 
movements [13].  Other studies have used load cells to 
estimate heart rate variability [14], and to separate slow wave 
and non-slow wave sleep [15].  In this paper, we extend these 
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prior results by describing our lab’s use of load cell data to 
classify segments of in-bed time into periods of sleep and 
wakefulness.  In particular, we demonstrate that a support-
vector machine (SVM) based classification approach using 
features derived from load cell signals  and patient 
demographics has good sensitivity and specificity over 27 
sleep patients with varying levels of sleep disordered 
breathing.  This was validated against gold standard PSG 
records of sleep and wakefulness.     

II. METHODS 

A. Subjects and Data Collection  

Twenty-seven subjects participated in this study.  All 

subjects provided written informed consent before 

participating in study activities (OHSU IRB #6308).  

Subjects were selected from a larger cohort of patients who 

had been admitted to the sleep lab for routine PSG and who 

had undergone simultaneous load cell data collection. The 

entire cohort was not used as some subjects’ load cell and 

PSG data had not been time aligned prior to this study. 

However, the subset used possessed a wide range on the 

PSG-scored Apnea-Hypopnea Index (AHI), which provided 

a wide range of sleep apnea severity and therefore a range of 

sleep/wake behaviors. Load cells were placed under each of 

the five existing supports of the bed at the Pacific Sleep 

Program. All patients received standard overnight 

polysomnography and the load cell data was collected 

simultaneously. PSG records were scored by an experienced 

sleep technician, including annotation of the sleep stage for 

each 30 second epoch of the record.  We then re-coded all 

sleep stages as “sleep”, to make sleep/wake a binary 

variable. These binary sleep stages were then used as ground 

truth for our evaluation.   
The 27 subjects (mean age 5114) had an average body 

mass index (BMI) of 31.9 kg/m
2
 ranging from 47.8 kg/m

2
 to 

22.2 kg/m
2
, 18 were male, 7 had an AHI of less than 5, 9 had 

an AHI between 5 and 15, and 11 had an AHI of greater than 
15. Across the 27 subjects a total of 23972, 30 second epochs 
were recorded. 

B. Load Cells and Data Processing 

The load cells used in this study were model AG 
100C3SH5eU (SCAIME, Annemasse, France).  The output 
of each of the 5 load cells was prefiltered with a 4-pole 
analog Butterworth filter with a cutoff frequency of 50 Hz 
before being digitized at a sampling frequency of 500 Hz by 
a 16 bit A/D converter (USB-1608FS, Measurement 
Computing, Norton, MA).  For the analysis described here, 
the digital signals were further low pass filtered with a 5 Hz 
cut-off frequency and decimated to a sampling rate of 10 Hz 
prior to further processing.  After time aligning the load cell 
data to the PSG data, the load cell data was also segmented 
into 30 second epochs corresponding to the ground truth PSG 
data. 

From the load cell data, we derived three additional 
signals.  First, we calculated a center of pressure (COP) 
signal [12], which is a vector valued  signal containing an 
estimate of the location of the COP on the bed with respect to 
a Cartesian coordinate system on the bed.  This signal is 
calculated as 
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where id is the (x,y) coordinate of the ith load cell and ix is 

the force measured by the ith load cell at time t.  From this 

signal we estimated the respiration signal, rx , by lowpass 

filtering the y component of the copx signal with a cutoff (-3 

db) frequency of 0.367 Hz.   The final signal we derived is a 

mean-square difference (msd) signal, which has been shown 

to contain information about movement in the bed [16].  

This signal is calculated separately for each load cell as 
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where ( )ix t is the local average of the signal calculated over 

the same window set by the window size, L, constrained to 

be an odd number and set to 11 for our analysis.  We further 

summarized the individual msd signals into a composite 

signal by summing the msd pointwise over all load cells.  

Figs. 1 and 2 show examples of each of the signals for 

epochs of wake and sleep, for one of the subjects. 

C. Feature Selection and SVM Classification 

In order to use load cell data to classify subject’s in-bed 
periods into epochs of sleep and wake, we first summarized 
the previously described signals into a set of load cell 
features and combined these with demographic information 
to generate a set of 26 variables that characterized each 30 
second epoch.  This set of 26 variables, or feature vector, fits 
loosely into three different categories of data: demographics, 
statistical representations of the signals, and sleep parameters.   

 

 

Figure 1. Three example traces from one subject for the center of pressure 

signal, xcop, in both the x (top) and y (bottom) directions for periods of sleep 

(red) and wakefulness (black).  Sleep and wake epochs were labeled by an 
experienced sleep technician using the polysomnography data. 
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Figure 2. Three example traces from one subject of the composite msd 

signal (top) and respiration signal (bottom) for periods of sleep (red) and 

wakefulness (black). Sleep and wake epochs were labeled by an 

experienced sleep technician using the polysomnography data. 

 
The demographic variables included age, height, weight, 

sex, body mass index, and race (coded as Caucasian or non-
Caucasian). While these variables were constant for a given 
patient, it is possible that measures such as weight and age 
could influence how the load cells capture respiration during 
sleep and wake differentially across patients.  We also 
included the patients’ AHI as estimated from PSG, since AHI 
unquestionably influences the respiration signal. In practice, 
the AHI could be estimated from the load cell data instead 
[11]. The statistical variables consisted of the sample mean 
and variance of the following signals: COP in both x and y 
directions, the respiration signal, the sum of the individual 
load cell signals, and the composite msd signal.  The sleep 
parameters consisted of multiple variables characterizing 
measures of movement and respiration during in-bed time. 
Two variables were used as measures of movement: the sum 
over time and range of the composite msd signal.  To 
characterize breathing, we detrended and estimated the peak 
frequency of the respiration signal, and the COP signal in 
both the x and y directions, using the fast Fourier transform 
(FFT).  We also calculated the maximum amplitude, full and 
90% range, and autocorrelation at one lag of the respiration 
signal. 

 To classify periods of sleep and wake from the features 
described above, we used an SVM.  SVM is a machine 
learning algorithm commonly used for binary classification 
problems, and is well described in the literature ([17], for 
example).  SVM is a supervised learning algorithm, and 
requires training on labeled data prior to being used for 
classification.  In our study, we used a Gaussian radial basis 
function (RBF) as the kernel for the SVM.  We also tried 
SVM with a linear kernel and logistic regression for 
classification, but neither method was competitive with the 
RBF-SVM. To train the SVM, we first split the feature 
vectors into sets corresponding to epochs of sleep and wake.  
We then randomly subsampled one third the total number of 
wake epochs (1491) and the same number of sleep epochs to 
make the training set.  This resulted in 2982 vectors – 
approximately 12.5% of the total data – in the training set.  
The remaining 87.5% of the data was used to test the 

classifier.  The results were quantified in terms of specificity 
and sensitivity of the classification.  The training and testing 
was repeated 100 times to calculate confidence intervals for 
the classifier performance.  We note that leave one out cross-
validation is often used in this context.  Our choice of 
repeated random subsampling was driven by the desire to use 
a smaller proportion of the data set to train the classifier (we 
used approximately 12.5% of the data as opposed to the 96% 
that would have been used) and because we wanted to have 
enough test and training splits to estimate assumption free 
confidence intervals from the data. 

III. RESULTS 

The results of the classification when compared with PSG 
labeled epochs are summarized in Table I.  The classifier 
achieved a mean sensitivity of 0.902 and a mean specificity 
of 0.923 on the training sets.  The 90% confidence intervals 
were (0.891, 0.911) and (0.911, 0.932), respectively.  This 
shows that the training data was fairly separable, although 
there were still a number of cases where sleep and wake were 
confused based on the features we used. The classifier also 
showed good generalization when applied to the testing sets.  
Specifically, the classifier achieved a mean sensitivity of 
0.808 and a mean specificity of 0.812, with corresponding 
90% confidence intervals of (0.790, 0.821) and (0.798, 
0.826), respectively. 

IV. DISCUSSION 

As Table I shows, the classifier performed very well in 
delineating periods of sleep from periods of wake. In 
particular, this classifier generalized well to the out-of-
sample test sets with sensitivities and specificities of over 0.8, 
on average.  Additionally, the tight confidence intervals 
suggest that this classifier is robust and performed 
consistently on out-of-sample data when trained over a large 
range of different training data.  This is especially promising 
for practical application as we used patient data collected 
from 27 patients with a wide variety of sleep-disordered 
breathing profiles, BMI index, heights, weights, and ages.   

There have been two other load cell based methods that 
have tried to estimate periods of sleep and wakefulness.  The 
first method is based on what is referred to as bed actigraphy, 
or BACT [18].  This approach consisted of estimating the 
intensity and duration of movements in the bed, and 
classifying periods as wakefulness if the duration of 
movement exceeded a threshold.  This method was validated 
on 10 healthy volunteers and had a high agreement between 
epochs of sleep and wake compared to PSG (95.2%).  
However, the average sensitivity was 0.644 (SD 0.133), 
indicating that sleep was not detected very well.  This 
suggests that the agreement with PSG was good primarily 
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SVM classification results for training and testing sets.  CI stands for 

confidence interval. 

  

  
Mean 

Sensitivity 

90% CI 

Sensitivity   

Mean 

Specificity 

90% CI 

Specificity  

Training 0.902 (0.891,0.911) 0.923 (0.911,0.932) 

Test 0.808 (0.790,0.821) 0.812 (0.798,0.826) 
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because periods of sleep were classified well, and most of the 
epochs from the sleep lab were periods of sleep.  Also, the 
use of healthy subjects frequently results in an overestimate 
of algorithmic performance when applied to patient data.  
The other load cell based method for estimating sleep and 
wakefulness was based on the ballistocardiogram derived 
from a load cell equipped bed [19].  This study also used 10 
healthy volunteers and achieved a mean sensitivity of 0.717 
and a specificity of 0.989.  No confidence intervals or 
standard errors were included to assess the variability in the 
results.  In addition, the study appears to have optimized the 
decision threshold to minimize the discrepancy between the 
PSG and the algorithm.  This makes it unclear how well the 
algorithm would generalize to unseen data, as it appears to 
have been optimized on the same data used to train the 
optimal threshold.  Additionally, as with the prior method, 
the use of healthy volunteers may have resulted in an 
overestimate of algorithm performance compared to the 
“real-world” application with sleep patients.   

Despite our promising results, we expect that some 
improvements will increase the performance of this classifier.  
In particular, heart rate information obtained from load cell 
data has been shown to be useful in detecting periods of sleep 
and wakefulness[19] and sleep stage[15].  We are currently 
working on implementing an algorithm for heart rate 
estimation and expect that features derived from the heart rate 
signal will increase classifier performance.  We also plan to 
study the respiration signal in more detail and investigate a 
more comprehensive characterization of this signal than those 
used here. 

In addition to improving the classification of wake versus 
sleep, we plan to implement automatic feature selection to 
determine the relative contribution of each of the features 
used in this study.  This will help determine which signals are 
the most important for detecting periods of sleep. 

V. CONCLUSION 

In this paper, we discussed an approach for classifying 
periods of sleep and wakefulness from patient demographics 
combined with unobtrusively derived sleep parameters from 
load cell data.  We showed a high sensitivity and specificity 
with narrow confidence intervals for out-of-sample 
classification when compared to ground truth PSG data.  Our 
study used data collected from 27 patients with different 
demographics, including a wide range of AHI, a measure of 
sleep disordered breathing.  In addition, we compared our 
method with previously described work and outlined the 
benefits of our study. Finally, we discussed future work to 
improve classifier performance and generalize the approach 
described here for the problem of classifying periods of sleep 
by sleep stage and wakefulness. 
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