

Promise of a Low Power Mobile CPU based Embedded System

 in Artificial Leg Control

Robert Hernandez, Student member, IEEE, Fan Zhang, Student member, IEEE,

Xiaorong Zhang, Student member, IEEE, He Huang, Member, IEEE, Qing Yang, Fellow, IEEE

Abstract—This paper presents the design and implementation

of a low power embedded system using mobile processor

technology (Intel AtomTM Z530 Processor) specifically tailored

for a neural-machine interface (NMI) for artificial limbs. This

embedded system effectively performs our previously

developed NMI algorithm based on neuromuscular-mechanical

fusion and phase-dependent pattern classification. The analysis

shows that NMI embedded system can meet real-time

constraints with high accuracies for recognizing the user’s

locomotion mode. Our implementation utilizes the mobile

processor efficiently to allow a power consumption of 2.2 watts

and low CPU utilization (less than 4.3%) while executing the

complex NMI algorithm. Our experiments have shown that the

highly optimized C program implementation on the embedded

system has superb advantages over existing PC

implementations on MATLAB. The study results suggest that

mobile-CPU-based embedded system is promising for

implementing advanced control for powered lower limb

prostheses.

Index Terms—Neural-machine interface, real-time system,

embedded system, support vector machine, control of artificial

limbs.

I. INTRODUCTION

A neural-machine interface (NMI) based on
neuromuscular-mechanical fusion [1] and phase-dependent
pattern recognition (PR) strategy [2] has been successfully
developed in our research group to identify user intent for
volitional control of powered lower limb prostheses.
Embedded implementation of this complex NMI algorithm
for real-time operation is essential for lower limb prostheses,
but is challenging due to the rigorous system requirements.
First, the prosthesis control must be accurate and responsive
to enable lower limb amputees to perform different tasks
safely and intuitively. In addition, the prosthesis control
system must perform continuously for 6-8 hours daily
without interruption. Finally, the system must be easily
integrated into the prosthetic limb. These requirements
demand the embedded system to be computational powerful,
low power, and small in size.

In our previous study, Field Programmable Gate Arrays
(FPGAs) have been used as the embedded system to
implement our designed NMI with Linear Discriminant
Analysis (LDA)-based classifiers [3]. The prototype
demonstrated promising performance for real-time NMI
implementation. Although extremely effective, FPGAs pose

many challenges during the design stage, such as language
syntax, design environment, and toolsets [4]. Another
concern with the use of FPGAs is its requirement of special
purpose hardware design and fabrication giving rise to high
cost. For example, a Support Vector Machine (SVM)-based
classifier improved the accuracy of NMI for intent
recognition compared to LDA [1]. However, hardware
programming the complex SVM algorithm on a FPGA is
challenging and time consuming. These difficulties limit our
capability to further optimize and develop the NMI for
neural control of powered lower limb prostheses.

With the wide availability of commodity off-the-shelf
hardware such as Personal Computers (PCs), an efficient and
cost-effective way of implementing our NMI is to develop an
NMI program specifically tailored to such Commercial of
the Shelf (COTS) hardware. Existing PC implementations of
our SVM-based NMI algorithms, however, are mainly based
on MATLAB giving rise to high overheads and poor real-
time performance. Our objective here is to develop a C
program realizing our NMI algorithm on a commodity PC
that is portable and fast enough.

One alternative to FPGA and regular CPU is a mobile
CPU. Mobile CPUs are low cost, low power, and much
smaller devices than regular CPUs (as shown in Fig. 1 [5]).
In addition, they have the capability to provide the flexible
design environment as a PC/CPU combination. However, the
computational power of mobile CPUs, such as the Intel
Atom

TM
 Z530, is relatively low [6,7]. Therefore, in this

study, we are interested to investigate whether or not a
mobile CPU can execute a highly computational intensive
algorithm, such as our phase-dependent, SVM-based NMI
for powered lower limb prostheses.

This paper makes the following contributions:

 Design and implementation of a NMI for artificial legs

based on mobile processors;

 Design and implementation of a highly optimized, C-

based, embedded application tailored to execute a phase-

dependent NMI with SVM classifiers;

 A performance analysis that evaluates the potential of

mobile processors for embedded implementation of a

NMI for neural control of powered lower limb

prosthesis.

II. SYSTEM DESIGN

A. Hardware Architecture

To provide viable use capability of a NMI, the NMI must
be small, dissipate low power, and be fast enough to execute
the classification algorithm in real-time. To meet these
requirements, the AxiomTek eBOX530-820-FL fanless

*This research was supported in part by the Department of the Navy

(Naval Undersea Warfare Center, Newport, Rhode Island) and NSF/CPS

#0931820, NSF#1149385, NIH #RHD064968A, NSF/CCF #0811333 and
NSF/CCF #1017177.

The authors are with the Department of Electrical, Computer and

Biomedical Engineering, University of Rhode Island, Kingston, RI 02881,
USA

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

5250978-1-4577-1787-1/12/$26.00 ©2012 IEEE

embedded hardware with the Intel Atom
TM

 Processor Z530
(512K cache, 1.6 GHz) was chosen [8]. The Intel Atom

TM

Processor Z530 provided the highest performance and lowest
power dissipation of Hyper-Threading capable mobile CPUs,
which is ideal for thermally constrained and fanless
embedded applications [9,10]. The Hyper-Threading
technology allows the operating system and the NMI
application to execute simultaneously on two Hyper-Threads
as they would on two physical processors [11]. This
minimizes the impacts of the OS execution on the real time
embedded NMI application.

B. Software Architecture

C was chosen as the software language in our study
because of its superior performance for real-time embedded
applications [12-15]. To enhance the system performance,
several programming techniques were used in the design and
implementation of the application. First, dynamic memory
management is one of the most expensive operations in C
applications [16], which may cost 30% of the total execution
time for the heap intensive C applications [16]. To avoid this
problem, the various data structures within the software were
defined statically with pre-defined maximum sizes.
Secondly, to increase the reliability of the application, the
data structures were placed in the application’s data segment,
not in the application’s stack [17], to help avoid stack
overflows. Other performance enhancements implemented
included loop unwinding [18] and inline function expansion
[19]. Loop unwinding is an efficient means to increase the
utilization of pipelines and helps eliminate loop overhead
[18]. Inline function expansion replaces a function call with
the body of the function, which reduces the overhead
associated with a function call during program execution
[19].

The designed Neuromuscular-Mechanical fusion PR
algorithm, utilizes SVM classification. The open source
library LIBSVM [20] was used and specifically tailored to
our embedded NMI application for real-time SVM
classification. LIBSVM was also utilized in our previous
MATLAB implementation, which served as a baseline for
accuracy determination of the embedded application.

III. PATTERN RECOGNITION ALGORITHM

The previously developed NMI identifies the user’s
locomotion mode based on electromyographic (EMG)
signals recorded from the residual thigh muscles and

mechanical forces/moments signals recorded from prosthetic
pylon. These EMG and mechanical data are segmented by
the sliding analysis windows. Features are extracted from the
raw EMG and mechanical data in each analysis window and
fused into one feature vector. This feature vector is sent to a
phase-dependant pattern classifier for determination of user
intent. The phase-dependant pattern classifier consists of
multiple sub-classifiers for individual defined gait phases
and a gait phase detector that identifies current gait phase
and switches the corresponding sub-classifier on. Detailed
description of this previously designed NMI can be found in
[1] and [2].

A. Feature Extraction

In this study, four time-domain (TD) features (the mean

absolute value, the number of zero crossings, the waveform

length, and the number of slope sign changes) were

extracted from EMG signals in each analysis window. For

mechanical measurements, the mean, minimum, and

maximum values in each analysis window were extracted as

the features. More detailed information can be found in [1].

The length of sliding analysis window and window

increment were 150 ms and 50ms, respectively.

The features and increments were chosen to match our

previous MATLAB implementations [21], thereby

providing a baseline for an accuracy comparison with the

newly designed embedded application.

B. Phase Dependant Pattern Recognition

To accurately determine user intent, SVM utilizing a
Radial Basis Function (RBF) kernel [21] was utilized. The
SVM gamma parameter of 0.015 was used.

In the designed phase-dependant classifier, four sub-
classifiers were defined corresponding to the following four
gait phases: initial double limb stance (phase 1), single limb
stance (phase 2), terminal double limb stance (phase 3), and
swing (phase 4) [21]. The gait phase detector detects these
gait phases based on the vertical Ground Reaction Force
(GRF). In order to build the parameters in the classifiers,
training procedure must be conducted on a training data set.
During training, the output of phase detector is used to label
the training data with the corresponding gait phase. Each
classifier is trained only with the data pertinent for its gait
phase. When testing the classification, the gait phase
detector determines which classifier is responsible for the
determination of user intent. The algorithmic data flow of the
phase-dependant pattern recognition is shown in Fig. 2.

C. Software Implementation

To implement the Neuromuscular-Mechanical Fusion
PR, three applications were developed. The first application
accepts offline raw training data, performs the EMG and
mechanical feature extraction, fuses and then normalizes the
features into vectors. The feature vectors are then separated
into their corresponding gait phases and provided to the
training application. The first application is also responsible
for generating the normalization parameters required by the
PR to normalize the testing data, when determining user
intent. The second application accepts the four sets of
training vectors and generates four SVM models, one model
for each gait phase. The third application accepts raw offline
testing data, the four gait phase SVM models, and the

Figure 1. Intel AtomTM mobile CPU size compared to a United States penny
(a United States penny is approximately 19.05 millimeters in diameter)

5251

normalization parameters. The application extracts EMG and
mechanical features from the raw testing data. The features
are then fused and normalized, with the provided
normalization parameters, into a vector. Finally, the
application determines the current gait phase, and forwards
the test vector to the respective phase based classifier for
determination of user intent. The software implementation
data flow is shown in Fig. 3.

IV. PEFORMANCE EVALUATION

This study was conducted with approval of Institutional
Review Board (IRB) at the University of Rhode Island and
informed consent of the subject. The evaluation was
performed offline on the data collected from a male subject
with a transfemoral amputation. The collected data included
the EMG signals from the subject’s residual thigh muscles
and mechanical forces/moments measured by a 6 degree-of-
freedom load cell mounted on the prosthetic pylon. The
monitored residual muscles included the rectus femoris (RF),
vastus lateralis (VL), vastus medialis (VM), biceps femoris
long head (BFL), semitendinosus (SEM), biceps femoris
short head (BFS), and adductor magnus (ADM). The
recognition accuracy of NMI by using the designed
embedded system was compared with the results of existing
PC implementations on MATLAB. In addition, the timing
and processor loading of the application’s execution on the
embedded hardware were evaluated. A power consumption
comparison between similar proposed NMI embedded
systems and this embedded system was provided.

A. Recognition Accuracy of NMI

The offline data was composed of seven different classes:
level-ground walking, ramp ascent, ramp descent, stair
ascent, stair descent, sitting, and standing. The comparison of
recognition accuracies of the NMI by using the designed
embedded system and existing PC implementations on
MATLAB are provided in Table I. This study utilized a
slightly different value for the gamma parameter required by
the SVM classifiers. The different gamma value was shown
to provide a slightly higher accuracy during testing. This is
noticeable in the comparison results, whereby the embedded
application slightly outperformed the MATLAB model in PR
accuracies.

Both the MATLAB results and the embedded application
had lower Phase 4 (swing) accuracies. Two explanations for
this result are provided in [22]. The first is that there is little
force/moment data present during the swing phase from the
prosthetic pylon [22]. The second explanation is related to
the swing phase being longer than any of the other three
phases, leading to larger variations in the EMG features [22].

B. Execution Timing and Processor Loading on the

Embedded Hardware

This previously designed NMI algorithm was executed
on the Intel Atom

TM
 based embedded hardware and the

performance results were evaluated. A total of 3555
predictions were produced by the Intel Atom

TM
 based

embedded hardware. For the purpose of this evaluation, the
prediction time will be defined as the total time to execute
feature extraction, normalization, gait phase detection and
classification for a single analysis window. The mean
prediction time was 0.8455 milliseconds with a standard
deviation of 0.1044 milliseconds. The worst case prediction
executed in 2.1265 milliseconds. These results clearly show
that the embedded system is capable of real-time
implementation at 50ms and 20ms window increments. If the
embedded system is combined with a highly responsive Data
Acquisition (DAQ) system to provide the EMG and
mechanical data, even a window increment of 10ms may be
feasible. At the 10ms window increment, the interface to the
DAQ and the DAQ system drivers will become of the utmost
importance.

Because there is additional loading on the CPU to
execute the data logging for post analysis, the CPU loading
provided by the operating system may be inaccurate.
Therefore the mean and maximum value of CPU loading
was calculated by (1) which were 1.691% and 4.253%
respectively.

 ()
 

Figure 2. Phase-dependant PR algorithmic data flow

TABLE I. MATLAB and embedded software classification accuracies

Figure 3. Software implementation data flow

5252

C. Power Consumption Comparison

Previous studies have utilized Field Programmable Gate
Arrays (FPGA) and PCs for similar NMI applications [23].
The reported power consumption for the FPGA was 3.499
watts and the AMD Turion 64x2 CPU within [23] can utilize
up to 35 watts [23]. The Intel Atom

TM
 Z530 Processor

utilized in this embedded system design dissipates 2.2 watts
[9]. The Intel Atom

TM
 CPU’s power dissipation is less than

one-fifteenth that of the CPU and less than two third that of
the FPGA.

V. CONCLUSIONS

This paper presented the design and implementation of a
mobile CPU based embedded system for a NMI for artificial
leg control. The performance evaluation showed that the
highly optimized C-based embedded application combined
with the mobile-CPU-based embedded hardware, can easily
meet real-time constraints. The performance evaluation also
shows that there is no loss in classification accuracy, when
compared with the MATLAB model [21]. In fact, there is a
slight increase due to the use of a different SVM gamma
parameter. Lastly, the CPU utilized for this embedded
system dissipated less power than other systems designed for
similar applications. Future work to be performed includes
interfacing the embedded system to a DAQ to create a real-
time capable system and testing the system on lower limb
amputees.

REFERENCES

[1] H. Huang, F. Zhang, L. J. Hargrove, Z. Dou, D. R. Rogers, and K. B.

Englehart, “Continous locomotion-mode indentification for prosthetic
legs based on neuromuscular-mechanical fusion,” IEEE Trans
Biomed Eng, vol 58, pp. 2867-75, 2011.

[2] H. Huang, T. A. Kuiken, and R. D. Lipshutz, “A strategy for
identifying locomotion mode using surface electromyography,” IEEE
Trans Biomed Eng, vol 56, pp. 67-73, 2009.

[3] X. Zhang, Q. Yang and H. Huang, “A Neural-Controlled Cyber
Physical System for Intent Recognition for Artificial Legs,” presented
at Design Automation Conference, San Francisco, 2012 (Accepted).

[4] I. Gonzalez, E. El-Araby, P. Saha, T. El-Ghazawi, H. Simmler, S.
Merchant, B. Holland, C. Reardon, A. George, H. Lam, G. Stitt, N.
Alam, M. Smith, “Classification of application development for
FPGA-based systems,” Conf Proc National Aerospace Electronics
Conference, 2008

[5] J. Mahoney. (2008, July) “Intel CEO: Atom Platform Something
‘Most of Us Wouldn’t Use’” [online] Available:
http://gizmodo.com/5026401/intel-ceo-atom-platform-something-
most-of-us-wouldnt-use [March 22, 2012]

[6] PassMark Software. (2012, March) “PassMark CPU Benchmarks -
Low End CPU's,” [online] Avaliable:
http://www.cpubenchmark.net/low_end_cpus.html [March 22, 2012]

[7] B. Crothers. (2008, April) “New Intel design may spur (more) tiny
PCs,” [online] Avaliable: http://news.cnet.com/8301-13924_3-
9928126-64.html [March 22, 2012

[8] AxiomTek Corporation. (2012). “Fanless Embedded System with
Intel® Atom™ Processor” [online]. Available:
http://axiomtek.com/Download/Spec/ebox530-820-fl.pdf [March 19,
2012]

[9] Intel Corporation. (2010, June). “Intel® Atom™ Processor Z5xx
Series Datasheet” [online]. Available:
http://www.intel.com/content/www/us/en/processors/atom/atom-
z540-z530-z520-z510-z500-45-nm-technology-datasheet.html [March
19, 2012]

[10] Intel Corporation. (2011, April). “Intel® Atom™ Processor Z6xx
Series Datasheet” [online]. Available:
http://www.intel.com/content/www/us/en/processors/atom/atom-
z6xx-datasheet.html [March 19, 2012]

[11] D. Marr, F. Binns, D. Hill, G. Hinton, D. Kaoufaty, J. Moller, M.
Upton “Hyper-Threading technology architecture and
microarchitecture,” Intel Technology Journal, vol. 6 no. 1, pp 4-15,
2002

[12] M. Weiskirchne. (2003, September). Comparison of execution times
of Ada, C and Java. EADS Deutschland GmbH Military Aircraft.
Muenchen, Germany. [online] Available:
http://www.aicas.com/info/EADS_benchmark_languare_comparison.
pdf [March 19, 2012]

[13] P. Sestoft. (2010, Feburary). Numeric performance in C, C# and
Java. University of Copenhagen. Copenhagen, Denmark. [online]
Available: http://www.itu.dk/~sestoft/papers/numericperformance.pdf
[March 19, 2012]

[14] Cherrystone Software Labs. (2010, August). Algorithmic
performance comparison between C, C++, Java and C#
programming languages. Cherrystone Software Labs. Boston, MA
[online] Available:
http://www.cherrystonesoftware.com/doc/AlgorithmicPerformance.p
df [March 19, 2012]

[15] P. Ambika, H. Ahmed. (2001). A performance analysis of Java and
C, University of Columbia, New York, NY, Avaliable:
http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-
02/litsurveys/haseeb-ambika.pdf [March 19, 2012]

[16] D. Tiwari, S. Lee, J. Tuck, Y. Solihin. “Exploiting fine-grained
parallelism in dynamic memory management,” IPDPS, 2010

[17] L. Ferres. (2010). Memory management in C: The heap and the stack.
Universidad de Concepcion, Concepcion, Chile. [online] Avaliable:
http://www.inf.udec.cl/~leo/teoX.pdf [March 19, 2012]

[18] A. Nicolau, “Loop quantization: unwinding for fine-grain parallelism
exploitation,” Cornell Univerisy, 1985, Avaliable:
http://ecommons.library.cornell.edu/bitstream/1813/6549/1/85-
709.pdf [March 19, 2012]

[19] W. W. Hwu, P. P. Chang, “Inline function expansion for compiling C
programs,” ACM SIGPLAN ’89 Conference on Programming
Language Design and Implentation, Portland, Oregon, June 1989

[20] C. C. Chang, C. J. Lin, “LIBSVM: a library for support vector
machnies,” ACM Transactions on Intelligent Systems and
Technology, vol. 2 issue 3, pp. 27:1-27:27, 2011

[21] F. Zhang, H. Huang, “Real-Time Recognition Of User Intent For
Neural Control Of Artificial Legs,”MEC’11, New Brunswick,
Fredericton, NB Canada, August 2011.

[22] H. Huang, F. Zhang, L. J. Hargrove, Z. Dou, D. Rogers, and K. B.
Englehart, “Continuous locomotion-mode identification for prostethic
legs based on neuromuscular-fusion,” IEEE Trans Biomed Eng, vol.
58 issue 10, pp. 2867-2875, October 2011

[23] X. Zhang, H. Huang, Q. Yang, “Design and implentation of a special
purpose embedded system for neural machine interface," Conf Proc
IEEE International Conference on Computer Design, 2010, pp. 166-
72.

5253

	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

