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Abstract—This paper presents the design and implementation 

of a low power embedded system using mobile processor 

technology (Intel AtomTM Z530 Processor) specifically tailored 

for a neural-machine interface (NMI) for artificial limbs. This 

embedded system effectively performs our previously 

developed NMI algorithm based on neuromuscular-mechanical 

fusion and phase-dependent pattern classification. The analysis 

shows that NMI embedded system can meet real-time 

constraints with high accuracies for recognizing the user’s 

locomotion mode. Our implementation utilizes the mobile 

processor efficiently to allow a power consumption of  2.2 watts 

and low CPU utilization (less than 4.3%) while executing the 

complex NMI algorithm. Our experiments have shown that the 

highly optimized C program implementation on the embedded 

system has superb advantages over existing PC 

implementations on MATLAB. The study results suggest that 

mobile-CPU-based embedded system is promising for 

implementing advanced control for powered lower limb 

prostheses. 

Index Terms—Neural-machine interface, real-time system, 

embedded system, support vector machine, control of artificial 

limbs. 

I.  INTRODUCTION 

A neural-machine interface (NMI) based on 
neuromuscular-mechanical fusion [1] and phase-dependent 
pattern recognition (PR) strategy [2] has been successfully 
developed in our research group to identify user intent for 
volitional control of powered lower limb prostheses. 
Embedded implementation of this complex NMI algorithm 
for real-time operation is essential for lower limb prostheses, 
but is challenging due to the rigorous system requirements. 
First, the prosthesis control must be accurate and responsive 
to enable lower limb amputees to perform different tasks 
safely and intuitively. In addition, the prosthesis control 
system must perform continuously for 6-8 hours daily 
without interruption. Finally, the system must be easily 
integrated into the prosthetic limb. These requirements 
demand the embedded system to be computational powerful, 
low power, and small in size. 

In our previous study, Field Programmable Gate Arrays 
(FPGAs) have been used as the embedded system to 
implement our designed NMI with Linear Discriminant 
Analysis (LDA)-based classifiers [3]. The prototype 
demonstrated promising performance for real-time NMI 
implementation. Although extremely effective, FPGAs pose 

many challenges during the design stage, such as language 
syntax, design environment, and toolsets [4]. Another 
concern with the use of FPGAs is its requirement of special 
purpose hardware design and fabrication giving rise to high 
cost. For example, a Support Vector Machine (SVM)-based 
classifier improved the accuracy of NMI for intent 
recognition compared to LDA [1]. However, hardware 
programming the complex SVM algorithm on a FPGA is 
challenging and time consuming. These difficulties limit our 
capability to further optimize and develop the NMI for 
neural control of powered lower limb prostheses.   

With the wide availability of commodity off-the-shelf 
hardware such as Personal Computers (PCs), an efficient and 
cost-effective way of implementing our NMI is to develop an 
NMI program specifically tailored to such Commercial of 
the Shelf (COTS) hardware. Existing PC implementations of 
our SVM-based NMI algorithms, however, are mainly based 
on MATLAB giving rise to high overheads and poor real-
time performance. Our objective here is to develop a C 
program realizing our NMI algorithm on a commodity PC 
that is portable and fast enough.  

One alternative to FPGA and regular CPU is a mobile 
CPU. Mobile CPUs are low cost, low power, and much 
smaller devices than regular CPUs (as shown in Fig. 1 [5]). 
In addition, they have the capability to provide the flexible 
design environment as a PC/CPU combination. However, the 
computational power of mobile CPUs, such as the Intel 
Atom

TM
 Z530, is relatively low [6,7]. Therefore, in this 

study, we are interested to investigate whether or not a 
mobile CPU can execute a highly computational intensive 
algorithm, such as our phase-dependent, SVM-based NMI 
for powered lower limb prostheses. 

This paper makes the following contributions: 

 Design and implementation of a NMI for artificial legs 

based on mobile processors; 

 Design and implementation of a highly optimized, C-

based, embedded application tailored to execute a phase-

dependent NMI with SVM classifiers; 

 A performance analysis that evaluates the potential of 

mobile processors for embedded implementation of a 

NMI for neural control of powered lower limb 

prosthesis. 

II. SYSTEM DESIGN 

A. Hardware Architecture 

To provide viable use capability of a NMI, the NMI must 
be small, dissipate low power, and be fast enough to execute 
the classification algorithm in real-time. To meet these 
requirements, the AxiomTek eBOX530-820-FL fanless 

*This research was supported in part by the Department of the Navy 

(Naval Undersea Warfare Center, Newport, Rhode Island) and NSF/CPS 

#0931820, NSF#1149385, NIH #RHD064968A, NSF/CCF #0811333 and 
NSF/CCF #1017177. 

The authors are with the Department of Electrical, Computer and 

Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, 
USA 

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

5250978-1-4577-1787-1/12/$26.00 ©2012 IEEE



embedded hardware with the Intel Atom
TM

 Processor Z530 
(512K cache, 1.6 GHz) was chosen [8]. The Intel Atom

TM
 

Processor Z530 provided the highest performance and lowest 
power dissipation of Hyper-Threading capable mobile CPUs, 
which is ideal for thermally constrained and fanless 
embedded applications [9,10]. The Hyper-Threading 
technology allows the operating system and the NMI 
application to execute simultaneously on two Hyper-Threads 
as they would on two physical processors [11]. This 
minimizes the impacts of the OS execution on the real time 
embedded NMI application. 

B. Software Architecture 

C was chosen as the software language in our study 
because of its superior performance for real-time embedded 
applications [12-15]. To enhance the system performance, 
several programming techniques were used in the design and 
implementation of the application. First, dynamic memory 
management is one of the most expensive operations in C 
applications [16], which may cost 30% of the total execution 
time for the heap intensive C applications [16]. To avoid this 
problem, the various data structures within the software were 
defined statically with pre-defined maximum sizes. 
Secondly, to increase the reliability of the application, the 
data structures were placed in the application’s data segment, 
not in the application’s stack [17], to help avoid stack 
overflows. Other performance enhancements implemented 
included loop unwinding [18] and inline function expansion 
[19]. Loop unwinding is an efficient means to increase the 
utilization of pipelines and helps eliminate loop overhead 
[18]. Inline function expansion replaces a function call with 
the body of the function, which reduces the overhead 
associated with a function call during program execution 
[19]. 

The designed Neuromuscular-Mechanical fusion PR 
algorithm, utilizes SVM classification. The open source 
library LIBSVM [20] was used and specifically tailored to 
our embedded NMI application for real-time SVM 
classification. LIBSVM was also utilized in our previous 
MATLAB implementation, which served as a baseline for 
accuracy determination of the embedded application.   

III. PATTERN RECOGNITION ALGORITHM 

The previously developed NMI identifies the user’s 
locomotion mode based on electromyographic (EMG) 
signals recorded from the residual thigh muscles and 

mechanical forces/moments signals recorded from prosthetic 
pylon.  These EMG and mechanical data are segmented by 
the sliding analysis windows. Features are extracted from the 
raw EMG and mechanical data in each analysis window and 
fused into one feature vector. This feature vector is sent to a 
phase-dependant pattern classifier for determination of user 
intent. The phase-dependant pattern classifier consists of 
multiple sub-classifiers for individual defined gait phases 
and a gait phase detector that identifies current gait phase 
and switches the corresponding sub-classifier on. Detailed 
description of this previously designed NMI can be found in 
[1] and [2]. 

A. Feature Extraction 

In this study, four time-domain (TD) features (the mean 

absolute value, the number of zero crossings, the waveform 

length, and the number of slope sign changes) were 

extracted from EMG signals in each analysis window. For 

mechanical measurements, the mean, minimum, and 

maximum values in each analysis window were extracted as 

the features. More detailed information can be found in [1]. 

The length of sliding analysis window and window 

increment were 150 ms and 50ms, respectively.  

The features and increments were chosen to match our 

previous MATLAB implementations [21], thereby 

providing a baseline for an accuracy comparison with the 

newly designed embedded application.      

B. Phase Dependant Pattern Recognition 

To accurately determine user intent, SVM utilizing a 
Radial Basis Function (RBF) kernel [21] was utilized. The 
SVM gamma parameter of 0.015 was used. 

In the designed phase-dependant classifier, four sub-
classifiers were defined corresponding to the following four 
gait phases: initial double limb stance (phase 1), single limb 
stance (phase 2), terminal double limb stance (phase 3), and 
swing (phase 4) [21]. The gait phase detector detects these 
gait phases based on the vertical Ground Reaction Force 
(GRF). In order to build the parameters in the classifiers, 
training procedure must be conducted on a training data set. 
During training, the output of phase detector is used to label 
the training data with the corresponding gait phase. Each 
classifier is trained only with the data pertinent for its gait 
phase.  When testing the classification, the gait phase 
detector determines which classifier is responsible for the 
determination of user intent. The algorithmic data flow of the 
phase-dependant pattern recognition is shown in Fig. 2. 

C. Software Implementation 

To implement the Neuromuscular-Mechanical Fusion 
PR, three applications were developed. The first application 
accepts offline raw training data, performs the EMG and 
mechanical feature extraction, fuses and then normalizes the 
features into vectors. The feature vectors are then separated 
into their corresponding gait phases and provided to the 
training application. The first application is also responsible 
for generating the normalization parameters required by the 
PR to normalize the testing data, when determining user 
intent. The second application accepts the four sets of 
training vectors and generates four SVM models, one model 
for each gait phase. The third application accepts raw offline 
testing data, the four gait phase SVM models, and the 

 
 

Figure 1. Intel AtomTM mobile CPU size compared to a United States penny 
(a United States penny is approximately 19.05 millimeters in diameter)  
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normalization parameters. The application extracts EMG and 
mechanical features from the raw testing data. The features 
are then fused and normalized, with the provided 
normalization parameters, into a vector. Finally, the 
application determines the current gait phase, and forwards 
the test vector to the respective phase based classifier for 
determination of user intent.  The software implementation 
data flow is shown in Fig. 3. 

IV. PEFORMANCE EVALUATION 

This study was conducted with approval of Institutional 
Review Board (IRB) at the University of Rhode Island and 
informed consent of the subject. The evaluation was 
performed offline on the data collected from a male subject 
with a transfemoral amputation.  The collected data included 
the EMG signals from the subject’s residual thigh muscles 
and mechanical forces/moments measured by a 6 degree-of-
freedom load cell mounted on the prosthetic pylon. The 
monitored residual muscles included the rectus femoris (RF), 
vastus lateralis (VL), vastus medialis (VM), biceps femoris 
long head (BFL), semitendinosus (SEM), biceps femoris 
short head (BFS), and adductor magnus (ADM). The 
recognition accuracy of NMI by using the designed 
embedded system was compared with the results of existing 
PC implementations on MATLAB. In addition, the timing 
and processor loading of the application’s execution on the 
embedded hardware were evaluated. A power consumption 
comparison between similar proposed NMI embedded 
systems and this embedded system was provided. 

A. Recognition Accuracy of NMI 

The offline data was composed of seven different classes: 
level-ground walking, ramp ascent, ramp descent, stair 
ascent, stair descent, sitting, and standing. The comparison of 
recognition accuracies of the NMI by using the designed 
embedded system and existing PC implementations on 
MATLAB are provided in Table I. This study utilized a 
slightly different value for the gamma parameter required by 
the SVM classifiers. The different gamma value was shown 
to provide a slightly higher accuracy during testing. This is 
noticeable in the comparison results, whereby the embedded 
application slightly outperformed the MATLAB model in PR 
accuracies.  

Both the MATLAB results and the embedded application 
had lower Phase 4 (swing) accuracies. Two explanations for 
this result are provided in [22]. The first is that there is little 
force/moment data present during the swing phase from the 
prosthetic pylon [22]. The second explanation is related to 
the swing phase being longer than any of the other three 
phases, leading to larger variations in the EMG features [22]. 

B. Execution Timing and Processor Loading on the 

Embedded Hardware 

This previously designed NMI algorithm was executed 
on the Intel Atom

TM
 based embedded hardware and the 

performance results were evaluated. A total of 3555 
predictions were   produced   by   the   Intel   Atom

TM 
  based 

embedded hardware. For the purpose of this evaluation, the 
prediction time will be defined as the total time to execute 
feature extraction, normalization, gait phase detection and 
classification for a single analysis window. The mean 
prediction time was 0.8455 milliseconds with a standard 
deviation of 0.1044 milliseconds. The worst case prediction 
executed in 2.1265 milliseconds. These results clearly show 
that the embedded system is capable of real-time 
implementation at 50ms and 20ms window increments. If the 
embedded system is combined with a highly responsive Data 
Acquisition (DAQ) system to provide the EMG and 
mechanical data, even a window increment of 10ms may be 
feasible. At the 10ms window increment, the interface to the 
DAQ and the DAQ system drivers will become of the utmost 
importance.  

Because there is additional loading on the CPU to 
execute the data logging for post analysis, the CPU loading 
provided by the operating system may be inaccurate. 
Therefore the mean and maximum value of CPU loading 
was calculated by (1) which were 1.691% and 4.253% 
respectively.  

            
               

                 (    )
    

 

Figure 2.  Phase-dependant PR algorithmic data flow 

TABLE I.  MATLAB and embedded software classification accuracies 

 

 
Figure 3.  Software implementation data flow 
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C. Power Consumption Comparison 

Previous studies have utilized Field Programmable Gate 
Arrays (FPGA) and PCs for similar NMI applications [23]. 
The reported power consumption for the FPGA was 3.499 
watts and the AMD Turion 64x2 CPU within [23] can utilize 
up to 35 watts [23]. The Intel Atom

TM
 Z530 Processor 

utilized in this embedded system design dissipates 2.2 watts 
[9]. The Intel Atom

TM
 CPU’s power dissipation is less than 

one-fifteenth that of the CPU and less than two third that of 
the FPGA.  

V. CONCLUSIONS 

This paper presented the design and implementation of a 
mobile CPU based embedded system for a NMI for artificial 
leg control. The performance evaluation showed that the 
highly optimized C-based embedded application combined 
with the mobile-CPU-based embedded hardware, can easily 
meet real-time constraints. The performance evaluation also 
shows that there is no loss in classification accuracy, when 
compared with the MATLAB model [21]. In fact, there is a 
slight increase due to the use of a different SVM gamma 
parameter. Lastly, the CPU utilized for this embedded 
system dissipated less power than other systems designed for 
similar applications. Future work to be performed includes 
interfacing the embedded system to a DAQ to create a real-
time capable system and testing the system on lower limb 
amputees.  

REFERENCES 

 
[1] H. Huang, F. Zhang, L. J. Hargrove, Z. Dou, D. R. Rogers, and K. B. 

Englehart, “Continous locomotion-mode indentification for prosthetic 
legs based on neuromuscular-mechanical fusion,” IEEE Trans 
Biomed Eng, vol 58, pp. 2867-75, 2011.   

[2] H. Huang, T. A. Kuiken, and R. D. Lipshutz, “A strategy for 
identifying locomotion mode using surface electromyography,” IEEE 
Trans Biomed Eng, vol 56, pp. 67-73, 2009.  

[3] X. Zhang, Q. Yang and H. Huang, “A Neural-Controlled Cyber 
Physical System for Intent Recognition for Artificial Legs,” presented 
at Design Automation Conference, San Francisco, 2012 (Accepted). 

[4] I. Gonzalez, E. El-Araby, P. Saha, T. El-Ghazawi, H. Simmler, S. 
Merchant, B. Holland, C. Reardon, A. George, H. Lam, G. Stitt, N. 
Alam, M. Smith, “Classification of application development for 
FPGA-based systems,” Conf Proc National Aerospace Electronics 
Conference, 2008 

[5] J. Mahoney. (2008, July) “Intel CEO: Atom Platform Something 
‘Most of Us Wouldn’t Use’” [online] Available: 
http://gizmodo.com/5026401/intel-ceo-atom-platform-something-
most-of-us-wouldnt-use [March 22, 2012] 

[6] PassMark Software. (2012, March) “PassMark CPU Benchmarks - 
Low End CPU's,” [online] Avaliable: 
http://www.cpubenchmark.net/low_end_cpus.html  [March 22, 2012] 

[7] B. Crothers. (2008, April) “New Intel design may spur (more) tiny 
PCs,” [online] Avaliable: http://news.cnet.com/8301-13924_3-
9928126-64.html  [March 22,  2012 

[8] AxiomTek Corporation. (2012). “Fanless Embedded System with 
Intel® Atom™ Processor” [online]. Available: 
http://axiomtek.com/Download/Spec/ebox530-820-fl.pdf [March 19, 
2012] 

[9] Intel Corporation. (2010, June). “Intel® Atom™ Processor Z5xx 
Series Datasheet” [online]. Available: 
http://www.intel.com/content/www/us/en/processors/atom/atom-
z540-z530-z520-z510-z500-45-nm-technology-datasheet.html [March 
19, 2012] 

[10] Intel Corporation. (2011, April). “Intel® Atom™ Processor Z6xx 
Series Datasheet” [online]. Available: 
http://www.intel.com/content/www/us/en/processors/atom/atom-
z6xx-datasheet.html [March 19, 2012] 

[11] D. Marr, F. Binns, D. Hill, G. Hinton, D. Kaoufaty, J. Moller, M. 
Upton “Hyper-Threading technology architecture and 
microarchitecture,” Intel Technology Journal, vol. 6 no. 1, pp 4-15, 
2002 

[12] M. Weiskirchne. (2003, September). Comparison of execution times 
of Ada, C and Java. EADS Deutschland GmbH Military Aircraft. 
Muenchen, Germany. [online] Available: 
http://www.aicas.com/info/EADS_benchmark_languare_comparison.
pdf [March 19,  2012] 

[13] P. Sestoft. (2010, Feburary). Numeric performance in C, C# and 
Java. University of Copenhagen. Copenhagen, Denmark. [online] 
Available: http://www.itu.dk/~sestoft/papers/numericperformance.pdf 
[March 19, 2012] 

[14] Cherrystone Software Labs. (2010, August). Algorithmic 
performance comparison between C, C++, Java and C# 
programming languages. Cherrystone Software Labs. Boston, MA 
[online] Available: 
http://www.cherrystonesoftware.com/doc/AlgorithmicPerformance.p
df  [March 19, 2012] 

[15] P. Ambika, H. Ahmed. (2001).   A performance analysis of Java and 
C, University of Columbia, New York, NY, Avaliable: 
http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-
02/litsurveys/haseeb-ambika.pdf [March 19, 2012] 

[16] D. Tiwari, S. Lee, J. Tuck, Y. Solihin. “Exploiting fine-grained 
parallelism in dynamic memory management,” IPDPS, 2010 

[17] L. Ferres. (2010). Memory management in C: The heap and the stack. 
Universidad de Concepcion, Concepcion, Chile. [online] Avaliable: 
http://www.inf.udec.cl/~leo/teoX.pdf [March 19, 2012] 

[18] A. Nicolau, “Loop quantization: unwinding for fine-grain parallelism 
exploitation,” Cornell Univerisy, 1985, Avaliable: 
http://ecommons.library.cornell.edu/bitstream/1813/6549/1/85-
709.pdf  [March 19, 2012] 

[19] W. W. Hwu, P. P. Chang, “Inline function expansion for compiling C 
programs,” ACM SIGPLAN ’89 Conference on Programming 
Language Design and Implentation, Portland, Oregon, June 1989 

[20] C. C. Chang, C. J. Lin, “LIBSVM: a library for support vector 
machnies,” ACM Transactions on Intelligent Systems and 
Technology, vol. 2 issue 3, pp. 27:1-27:27, 2011 

[21] F. Zhang, H. Huang, “Real-Time Recognition Of User Intent For 
Neural Control Of Artificial Legs,”MEC’11, New Brunswick, 
Fredericton, NB Canada, August 2011.  

[22] H. Huang, F. Zhang, L. J. Hargrove, Z. Dou, D. Rogers, and K. B. 
Englehart, “Continuous locomotion-mode identification for prostethic 
legs based on neuromuscular-fusion,” IEEE Trans Biomed Eng, vol. 
58 issue 10, pp. 2867-2875, October 2011   

[23] X. Zhang, H. Huang, Q. Yang, “Design and implentation of a special 
purpose embedded system for neural machine interface," Conf Proc 
IEEE International Conference on Computer Design, 2010, pp. 166-
72. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5253


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

