
  

 

Abstract— Pervasive computing becomes very active research 

field these days. A watch that can trace human movement to 

record motion boundary as well as to study of finding social life 

pattern by one’s localized visiting area. Pervasive computing 

also helps patient monitoring. A daily monitoring system helps 

longitudinal study of patient monitoring such as Alzheimer’s 

and Parkinson’s or obesity monitoring. Due to the nature of 

monitoring sensor (on-body wireless sensor), however, signal 

noise or faulty sensors errors can be present at any time. Many 

research works have addressed these problems any with a large 

amount of sensor deployment. In this paper, we present the 

faulty sensor detection and isolation using only two on-body 

sensors. We have been investigating three different types of 

sensor errors: the SHORT error, the CONSTANT error, and 

the NOISY SENSOR error (see more details on section V). Our 

experimental results show that the success rate of isolating 

faulty signals are an average of over 91.5% on fault type 1, over 

92% on fault type 2, and over 99% on fault type 3 with the fault 

prior of 30% sensor errors. 

I. INTRODUCTION 

The technical advance on sensor technology and mobile 
device over the past few decades has changed the whole 
paradigm of the motion monitoring system.  For the 
combination of sophisticated inertial sensing, wireless 
communication and signal processing technologies have 
made such a pervasive and remote monitoring possible 
[1]-[3].  

In order to obtain accurate motion monitoring, the 
monitoring system should provide many factors such as the 
compactness in size, the long last battery life, the durability of 
sensors, and so on. However, due to the nature of the sensing 
and communication mechanisms, these monitoring sensors 
are susceptible to errors and failures.  

In this paper, we focus on the problem of identifying and 
isolating faulty sensor(s) in a network of two on-body inertial 
sensors. First, we introduce the related works on the fault 
detection and isolation problems in wireless sensor networks. 
Next, we outline the three types of fault sensor data. Then, we 
proposed our fault detection scheme using history based 
approaches that can facilitate this process without the need for 
a larger number of sensors for redundancy or fault tolerance. 
Our experimental results show over 90% of accuracy with 30% 
of sensor error rate. The proposed approach cannot identify 
and isolate all sensor faults, especially if the errors are 
marginal or the noise on the signal is minor. However, our 
experimental results show that our approach can provide 
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good confidence in the pervasive monitoring system with 
only two sensor deployments that is being used for 
interpreting activities of daily living. 

Contributions: In [6], we carried out studies on fault 
detection and isolation problems among larger number (9 or 
more) on-body sensors. Considering the difficulty in wearing 
multiple on-body sensors, in this paper, we have focused on 
reducing the number of sensors to just two. Conducting a 
study with 9 sensor locations, we come up with 
recommendation for the locations of two sensors that would 
facilitate pervasive monitoring. Then, we contribute by 
facilitating fault detection and isolation in these two sensors. 

II. RELATED STUDY 

Motion monitoring sensors in the Pervasive Healthcare 
Systems consist of small and low-cost sensors. These sensors 
are exposed in harsh environments that node failure or faulty 
sensor reading becomes inevitable. Therefore the fault 
tolerance system in wireless sensor networks have been 
studied for many years [8]-[10].  

Most algorithms like [8] have high fault detection 
accuracy with a relatively low fault probability, whereas the 
performance terribly degrades as the number of nodes 
increase. In order to solve such a low scalability problem, 
authors present a distributed adaptive scheme for fault 
detection in WSNs in [9]. Dynamically by adjusting the 
parameters such as thresholds in each node, the scheme can 
keep up high performance even with increased number of 
faulty nodes. In the proposed approach of [10], the network is 
divided into four disjoint zones until the suspected faulty 
node is identified. In each zone, there is a master in charge of 
finding the suspected faulty node and identifying the faulty 
nodes. The approach is shown that faulty node detection 
accuracy is considerably high when the number of faulty 
nodes is relatively small to the number of sleeping nodes.  

In summary, many existing fault detection schemes 
require two basic assumptions: (1) a large amount of sensor 
deployments; and (2) a similar or the same sensed value 
between the sensor and its neighbor sensors. These aspects 
cannot be fulfilled in Pervasive healthcare system with 
on-body sensors for monitoring activities of daily living for 
reasons such as: different body joints produce different data; 
and the number of deplored sensors must be small such that it 
does not restrict daily activities. Our proposed approach 
focuses on these problems. 

III. FUNDAMENTAL EQUATIONS 

In this section, we explain the fundamental methods that 
are used through the paper: the Power Spectral Density (PSD) 
and the Singular Value Decomposition (SVD). SVD is one 
method of the dimension reduction techniques without losing 
much of the signal patterns. PSD is another important metrics 
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for detecting unusual motion behavior or faulty sensor 
reading. We assume many human motions generate very low 
frequency that its power spectrum has high reading on a low 
frequency zone. We, also, assume that any constant sensor 
reading generate very low power spectrum. We mainly use 
the SVD for the motion classification and the PSD for 
checking a faulty sensor reading.  

A. Singular Value Decomposition (SVD) 

Sliding windows of the sensor node has been used for 
dimension reduction which preserves the pattern of data. 
Consider the sliding window of a matrix M with m number of 
time frames where k is x, y, z-axis. For each m x 3 matrix with 
m >= 3, there is an m x 3 unitary matrix U, an m x 3 diagonal 
matrix Σ with nonnegative real numbers on the diagonal, and 
V

T
 a conjugate transpose of an 3 x 3 unitary matrix V. The 

diagonal values of Σ are the singular values of matrix Mi (eq. 

1). These extracted the singular values {  
     

    
 } of matrix 

Mi represents the SVDi of sensor location i (eq. 2.) 
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          SVDi = {  
     

    
 }                                            (2) 

B. Power Spectral Density (PSD)  

The PSD simply transform the time dependent data into 
the frequency dependent data such that any unusual sensor 
reading (e.g., a sequence of data tweaking) can be easily 
observed. For the PSD transformation we use the 
Cooley-Tukey algorithm. The Cooley-Tukey algorithm [4] 
subdivides size N points into smaller Discrete Fourier 
Transforms (DFT) of sizes N1 and N2 recursively (where 
N=N1N2). The DFT algorithm transforms the sequence of N 
complex number vector T={ 

 
,  
 
  
 
     

   
} into T’ = {X0, 

X1 ,X2 ,..,XN-1}. The DFT is defined by eq. 3. 
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where   
   

  is a primitive N’th root of unit; an integer   is 
ranging from 0 to N-1; i is the imaginary unit; and the    can 
be viewed as coefficients of T in an orthonormal basis. 

PSD values are highly dependent on the pattern of their 
time domain value. Actual acceleration values of faulty node 
may not be so much different from those of high energy 
motions. Notice that the pattern, however, will be preserved 
regardless of any motion values on time domain. Hence, what 
we are interested in is not an actual value of power spectral 
density (PSD) but rather its pattern for a particular motion 
sensor node or a collection of sensor nodes. We use Fast 
Fourier transform algorithm to transform acceleration data of 

each sensor axis {    
 ( )   

 ( )   
 ( ) } into the power 

spectrum {    
 ( )     

 ( )     
 ( )} (eq. 4). 

               
 
( )   ({  

 
( )}

   

   
)                                (4) 

where t is time(sec), h is frequency (Hz), i is a sensor 
location and j∈{x,y,z axis}. 

IV. FAULT ISOLATIONS 

In this section, we explain a flow of our proposed fault 
detection scheme in detail. We separate the motion signal pair 

(right pocket signal and hand signal) with six motion groups 
(walking; running; jumping; sitting down and standing up; 
stair walking; and hand waving motions) based on their 
motion activeness. For the fault detection and isolation, the 
two step detection method is used. The first step is to detect 
unusual sensor readings by using the Gaussian Mixture 
Model clustering and the second step is to isolate the faulty 
sensor location by using the Bayesian Probability. 

A. Gaussian Mixture Model Clustering 

In order to separate the faulty sensor data and the 
non-faulty sensor data, the Gaussian Mixture Model 
Clustering technique [8] is used. Our GMM clustering base 
approach has two steps of divided processes: 1) defining the 
membership of input sensor data; 2) separating the input data 
and the selected motion data group into two data groups. We 
simply deploy all the data including faulty node reading as 
well as normal motion reading and separate them by two 
sensor data groups: a faulty group GF and a non-faulty group 
GT.   

The frequency domain of the acceleration data of the 
normal motions cannot be easily classified unless there are 
noticeable signal changes. Many of PSD values are similar 
among different motions. Therefore, it is not a very good 
feature to classify motion groups. On the other hand SVD 
values have much better motion separation than the PSD.     

To find the motion group membership of input signal, the 
Euclidian distance is used. Every time a new sensor input is 
received, the Euclidian distance (eq 5) is computed from the 
input feature vector (Vi) of the current motion segment to the 
centroid (Ck) of the each motion group where   

 ∈
     

  ∈   , and the nearest distanced group is selected as a 
reference set for fault detection.  

            (     )   ∑ √(  
    

 )
  

                        (5)  

We use the Gaussian Mixture Model to estimate and 
generate normal and abnormal sensor groups. Each set of 
sensor group consists of similar power spectral density and 
singular value of the particular window. Each clustered set G

i
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   ,   
  is non-faulty set, and   

  is 
faulty set 

B. Fault Probability 

After dividing two groups of sensor data cluster sets  

  
 
 {  

 
   
 
      

 
}  and   

 
 {    

 
     
 
        

 
}   of the 

sensor j, select each member   
 ∈   

 
to the selected motion 

group set   
 
 {  

 
   
 
        

 
} of sensor j from the motion 

database to the set    such that it becomes    

{  
 
   
 
        

 
   
 
} . The normal probability   (  

 
)  can be 

computed using eq. 6 with mean µ and standard deviation   

of the set   . From the fault group   
 
, we estimate a possible 

number of fault sensor reading k (eq. 7) for computations of 

conditional probabilities of current signal reading   
 
 being 

fault or not (eq. 8 for fault probability and eq. 9 for not being 
fault probability.) The Bayesian fault probability for current 

node reading  ( |  
 
) can be computed using eq. 10. 
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Example: 

Let’s assume that a selected motion group set {   

*                    +    
  *        + and   

  
*                    +  , then |  

 |   and |  
 | =7. The 

prior fault probability of 
|  
 |

|  
 | |  

 |
 is 0.3. Let’s assume that 

one of node reading value in the set   
  is 34 which is an 

unusual value for node H. We can simply compute k that is 
0.3*8 (size of Xj with a new value 34) = 2. Mean and sigma of 
X

H
 are 13.6 and 3.39 respectively. Likelihood probability 

 (  ) is 0.0031. Then  

    (  | ) = (
 
 
) (      ) (        ) =2.64*10

-4
, and 

    (  | ) = (
 
 
) (      ) (        )  = 2.469*10

-14
.  

With all these values we can compute Bayesian 
probability of input 34 being fault. That is 

       ( |  )  
             

(                          (   )
 = 1 

Since p(f|34) is 1 that it can be categorized as an unusual 
node reading.  

For the minimum threshold value of the fault probability, 
the difference of the hand sensor and the right pocket senor is 
computed. We compute the difference Δδl of two sensor H 

and RP such that Δδl = |   
  -   

   | where        . 
Different motion defines different Δδl. We use equation 
(10)-(14) to compute fault probability of each Δδl and set the 
minimum threshold of fault probability as fallow (eq. 11).     

                           (* ( |Δδ  )+))                          (11) 

                           where 1  i  |  
 
| 

Repeat these processes for all sensor readings in the faulty 
sensor group of both the hand sensor data and the right pocket 
sensor data; and compare the fault probability of both the 
hand and the right pocket to isolate faulty sensors. Fault 
decision flows are shown in Algorithm 1. 

V. EXPERIMENTAL RESULTS 

We assume that conventional threshold based tests should 
filter out faults causing constant reading or no sensor reading 
as well as higher threshold. Also, minor noise can be easily 
collected by using the low pass filter or the Kalman filter. 
Therefore, we examine only high volumes of noisy sensor 
readings and unusual sensor readings with the marginal 

errors. The sample set was collected six different motions 
(walking, running, jumping, walking on the stairs, sitting 
down and standing up, and hand waving) from 12 people 
using the iPhone 4G and the iPod touch 3G. In this study, we 
are not focusing on the hand dominance of the participants. 
For experiment implementation, Matlab 7.9 was used to 
program fault detection algorism. Faulty nodes and faulty 
motions were simulated in a random manner.  

A. Simulation Parameters  

Three faulty signals were injected for faulty node 
readings: 

• Fault Type 1: CONSTANT [5] sensor error is a series of 
data with zero or near zero variation for a period of time. 

• Fault Type 2: SHORT [5] sensor error generates data 
significantly deviated from expected sensor temporal models 
of the data.  

• Fault Type 3: NOISY sensor data that may be caused by 
communication noise or unstable sensors. 

 We used prior probability p(x) = {x| x = 5*k, 1 ≤ k ≤ 19, 
and k ∈  } such that we can compare detection accuracies. 

Algorithm 1. Algorithm for fault detection 

Input: Let input data set Ginput and the selected motion 
group set Gmotion from the motion database 
using the equation 9. 
Let a set G0 = [Ginput  Gmotion] 

              Gnew_motion = Gmotion 
Output: [Fault sensor location, Gnew_motion] 

Step 1 From the given set G0, separate two sets   
 , 

  
  using GMM   

if  |  
 
        

 
|           

 
 

         goto step 2 
else 

          choose next input data     
 
∈   

 
 

                       where   
 
∈   

 
 ,  ∈ *    +  

endif 
Step 2: Count the number of data sets that are bigger 

than probability threshold   from the eq. 11. 

If ( ( |  
 )    )   H += 1 

If ( ( |  
  )    ) RT += 1 

Where   from the eq. 11  
Step 3: If   

         last element of the set   
   

      goto Step 4 
else 
      goto step 2 
endif 

Step 4: 
If (H>

|  
 |

 
  and RT>

|  
  |

 
)  

          {both sensors are faulty} 

else if (RT>
|  
  |

 
) 

         {the right pocket sensor is faulty} 

else if (H>
|  
 |

 
 )  

          {the hand sensor is faulty} 

else    {need a visual inspection to add   
 
 

             
 
 ∈ Gnew_motion, j ∈ {H,RT} } 

endif 
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For each fault type error, three faulty sensor detection cases 
were tested:  

1) Only the hand sensor is faulty. 
2) Only the right pocket sensor is faulty. 
3) Both the hand and the right pocket sensor are faulty. 

B. Experimental results 

With all three cases of fault detections scenarios, we have 
been achieved an average of over 91% accuracy with the fault 
prior probability of 30% (see TABLE I (a)). In our 
experimental results for the Fault Type 1 indicated that right 
pocket sensor had much higher accuracy among all three test 
cases (the hand sensor error, the right pocket sensor error, and 
both sensor error detection cases).  

The precision of the hand sensor error detection, however, 
was less stable than that of the right pocket sensor error 
accuracy. It may be caused by the nature of hand motion. 
Since hand motion is much higher degree of freedom that the 
obtained signal can be much nosier than that of the right 
pocket sensor in some motions. The precision of the both 
sensor error result had lowest rank among three test cases due 
to the precision of the hand sensor error. 

The accuracy result of the Fault type 2 had slightly better 
than the accuracy result of the Fault type 1. With all three 
cases of fault detections scenarios, we have been achieved an 
average of over 92% accuracy with the fault prior probability 
of 30% (see TABLE I (b)). Our experimental result showed 
that precision of the Fault Type 2 had more stable than the 
precision result of the Fault type 1. Overall, the results were 
very similar to those of the Fault Type 1. 

Among all three Fault Types the Fault Type 3 had the 
highest accuracy. We have been achieved an average of over 
99% accuracy with the fault prior probability of 30% for all 
three test cases (see TABLE I (c)). The Fault Type 1 errors 
and the Fault Type 2 errors were sharing one common 
characteristic that is the injected noise is not much different 
from the original signal. On the other hand, the Fault Type 3 
did not share the much of similarity between the original 
sensor signal and the error injected sensor signal. This 
indicates that the accuracy of detecting fault sensor becomes 
less accurate if the noise of the detected sensor is minor.  

VI. CONCLUSION 

One of the challenges of the fault detection problems in 
the pervasive monitoring system is that the sensor reading of 
one location may not be the same or similar to other sensor 
readings. More challenging problem is to deal with small 
number of sensor nodes.   

In this paper, we have proposed the fault detection and 
isolation algorithm in the pervasive motion monitoring with 
two motion sensors. The proposed approach works with three 

different types of faulty sensor data. The extracted features 
(SVD and PSD) help to identify the similar motion group as 
well as to isolate three different types of sensor errors. The 
proposed algorithm requires the only two sensor deployment. 
Our experimental results show over 90% of success rate for 
all three types of sensor errors. The success rate of isolating 
faulty signals are an average of over 91.5% on fault type 1, 
over 92% on fault type 2, and over 99% on fault type 3 with 
the fault prior of 30% sensor errors.  

VII. FUTURE WORK 

One of the potential directions that we can pursue is to be 
dealing with missing sensor data. In the pervasive monitoring 
system, missing data caused by communication error or 
malfunction of the sensor can happens. In our experiment, we 
assumed that the sensors always generate motion signals, and 
the base station always obtains the sensor readings. In real life, 
sensors are not always synchronized perfectly. The poor 
constructions of the sensors or monitoring program can 
generate missing data or unsynchronized data.  Therefore it is 
critical to investigate such problem and to propose solutions. 
The missing data analysis has been studied more than a 
decade, yet not many research have been focused on the 
missing data analysis of the pervasive monitoring system. 
This becomes one the challenging research directions. 
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TABLE I. The experimental results of average faulty sensor detection 

 (a) Fault Type 1 (b) Fault Type 2 (c) Fault Type 3 

P(x) 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 

Accuracy(%) 97.7 85.7 73.7 85.4 86.2 91.5 99.4 97.9 97.4 96.4 93.8 92.0 100 100 100 100 99.8 100 

Precision(%) 69.1 66.1 73.7 79.1 76.1 71.3 89.0 79.7 82.3 82.0 74.9 73.0 100 100 100 100 99.4 100 

Recall(%) 96.2 100 100 98.6 97.2 100 100 100 100 100 100 100 100 100 100 100 100 100 

*p(x) indicates fault probability (%) 
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