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Abstract— Recently, it has become very important to analyze 

atrial activity (AA) and to detect arrhythmic AAs and, for this, 

complete ventricular activity (VA) cancellation is prerequisite. 

There have been several VA cancellation algorithms for 

multi-lead ECG but VA cancellation algorithm for single-lead is 

quite a few. In this study, we have modeled thoracic ECG and, 

based on this model, proposed a novel VA cancellation 

algorithm based on event synchronous adaptive filter (ESAF). 

In this ESAF, the AF ECG was treated as a primary input and 

event-synchronous impulse train (ESIT) as a reference. And, 

ESIT was generated so to be synchronized with the ventricular 

activity by detecting QRS complex. To evaluate the 

performance, it was applied to the AA estimation problem in 

atrial fibrillation electrocardiograms. As results, even with low 

computational cost, this ESAF based algorithm showed better 

performance than the ABS method and comparable 

performance to algorithm based on PCA (principal component 

analysis) or SVD (singular value decomposition). We also 

proposed an expanded version of ESAF for some AF ECGs with 

bimorphic VAs and this also showed reasonable performance. 

Ultimately, our proposed algorithm was found to estimate AA 

precisely even though it is possible to implement in real-time. 

We expect our algorithm to replace the most widely used 

method, that is, the ABS (averaged beat subtraction) method. 

I. INTRODUCTION 

Even an electrocardiogram (ECG) includes both atrial 
activity (AA) and ventricular activity (VA) related 
information, it has been mainly used to measure the rate and 
regularity of VA and to detect arrhythmic VAs. Recently, the 
prevalence of arrhythmic AA, especially atrial fibrillation 
(AF), has been increasing so to be the most common cardiac 
arrhythmia [1]. The atrial arrhythmia has been known that it 
tends to be concurrent with life-threatening ventricular 
arrhythmias or to be followed by them. So, it comes to be very 
important to analyze AA and to detect arrhythmic AAs and a 
complete VA cancellation is prerequisite for this. Although 
there have been several algorithms which can cancel VA with 
multi-lead ECGs, a few algorithms have been reported for 
single-lead ECGs. Meanwhile, once AF without ventricular 
arrhythmia occurs, the ECG shows normal sinus rhythm 
(NSR) VA as well as irregular AA with a high rate of up to 
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more than 300 cycles per minute instead of normal P waves. 
Because the amplitude of this VA is generally several times 
higher than that of AA, the incomplete VA cancellation causes 
distortion of the AA within the VA cancelled period, that is, in 
QRS interval. And, this distortion may leads to miscalculation 
of the AA rate in AF ECGs, called as atrial fibrillatory rate, 
which has primary importance in AF maintenance and therapy 
evaluation [2, 3]. Because of the overlapped spectral 
distributions between AA and VA, linear filter based 
algorithms do not work properly [4]. So, the averaged beat 
subtraction (ABS) method [5, 6], which is applicable to single- 
or multi-lead AF ECGs with low computational costs, has 
been most widely used. In case of multi-lead AF ECG, several 
methods have been proposed to cancel out VA or to extract it 
from AF ECG with excellent results. These are blind source 
separation [4], spatiotemporal QRST cancelation [7], and so 
on. However, in case of single-lead AF ECG, a few methods 
were suggested; averaged beat subtraction method [5], 
wavelet transform based method [8], principal component 
analysis (PCA) based algorithm [9], singular value 
decomposition (SVD) based algorithm [10]. The wavelet 
transform based VA cancellation has showed very low 
temporal correlation between known AA and estimated AA 
and both PCA- and SVD-based algorithm have needed 
extremely high computational costs and manual intervention 
even with excellent performance. Under these circumstances, 
in this study, we suggested a new VA cancellation algorithm 
based on event synchronous adaptive filter (ESAF) for 
single-lead ECGs and applied it to estimate AA in single-lead 
AF ECGs for its performance evaluation. 

II. PROPOSED ALGORITHM 

A. AF ECG Modeling 

In this study, we have modeled a thoracic ECG as the 
summation of an AA related signal and a VA related signal 
and these are assumed as the impulse response of intracardiac 
atrial- and ventricular-contraction source respectively, as 
shown in Fig. 1 (left). As for a normal sinus rhythm (NSR), an 
impulse-like atrial contraction source spontaneously generated 
at the sinoatrial (SA) node causes atrial contraction and travels 
to the atrioventricular (AV) node. After a short delay, this 
leads to ventricular contraction. In this case, the number of 
ventricular contraction impulse is dependent on that of atrial 
contraction impulse and the ratio of them is 1:1. One the other 
hand, as for an AF rhythm, while irregular sources are 
generated from atrial ectopic sites at the same time, these 
sources are partially transmitted to the ventricle according to 
the AV node’s inherent conduction properties and cause 
corresponding ventricular contractions.  
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Figure 1.  Block diagram of the proposed ECG modeling (left) and VA 

cancellation algorithm (right)  

The ratio of the number of ventricular contraction impulse 
to that of atrial contraction impulse is unspecific and these two 
events become uncorrelated. When we consider an adaptive 
filter shown in Fig. 1 (right), whose primary input is the 
summation AA and VA and reference is the impulses 
synchronized with every VA, so-called an event synchronous 
impulse train (ESIT), this adaptive filter will be similar to an 
AA estimation problem. And, it will be solved by finding a 
weight vector whose impulse response is close to VA. And, 
this searching process of the optimal weight vector becomes 
equivalent to the estimation of ‘transfer function 2’. 
Eventually, we can perform the VA cancellation by 
subtracting the estimated VA from the delayed primary input. 
Here, the atrial contraction source is excluded in our model 
because its priori information is hardly known and, what is 
more, it is not essential to solving the problem. 
 

B. Algorithm Implementation 

Based on the proposed model, the primary input, AF ECG 
(l(n)), can be expressed as the summation of AA (s(n)) and VA 
(a(n)), which is assumed as a convolution of the ventricular 
contraction source (c(n)) and the ‘transfer function 2’. And, 
we can easily detect every VA in the primary input, that is, 
QRS complex and can generate impulses synchronized with 
QRS complex, that is, ESIT. Then, we can regard this ESIT as 
an estimated ventricular contraction source (ĉ(n)) written in 
(1). 

 

               (1) 

Here, rm represents the position of the mth R-wave peak 
and W is the pulse width of the impulse. The proposed 
adaptive filter will search the optimal weight vector whose 
impulse response approximates the VA closely and this 
estimated VA (y(n)) can be simply calculated by (2) thanks to 
the fact that output of ESIT is 0 or 1. 

 

           (2) 

Here, N represents the order of filter and h represents the 
weight vector. Finally, we can get a VA cancelled signal, 

estimated AA, as the error signal (e(n)) by a simple equation 
as like (3) where D means a proper delay. 

 

e(n) = l(n-D) -  y(n)                                  (3) 

In this study, the detection of the R-wave peak was 
performed by the real-time algorithm introduced by Pan and 
Tomkins [11]. The LMS algorithm was used to update the 
weight vector in the ESAF and its learning rate was set to 0.2. 
The width of an impulse, W, was chosen as 1 so to minimize 
the computational cost.  And, because we have dealt with AF 
ECGs sampled at 1000 Hz, the filter order was set to 120 
based on the fact that the normal QRS duration is generally 
less than 120 msec. The delay of the primary input, D, was 
selected as 50 equivalent to 50msec empirically. Meanwhile, 
the filtering process of (2) requires K times of addition and the 
weight vector updating process require K times of 
multiply-and-accumulate (MAC) operation where K 
represents is the number of events, that is, VAs. 

III. ALGORITHM EVALUATION 

We have tested the proposed algorithm with two different 

datasets; AF ECGs containing monomorphic VAs, that is, 

only NSR beats and AF ECGs containing bimorphic VAs, that 

is, NSR beats and PVC beats. And, two index, called 

ventricular residue (VR) and similarity (S), were used [10, 12] 

for the performance evaluation. The indexes of our algorithm 

were compared with those of ABS method. This VR estimates 

the ventricular residua in the estimated AA in QRS interval 

and, for the ith QRS interval, VR is defined as 

 

 (4) 

where 2H+1 denotes the samples number of the QRS 

interval, Q represents the number of samples of AA, and ri 

represents the R peak occurrence time. For simplicity, H was 

fixed to 50. Consequently, the VR becomes the ratio of the 

maximum energy in current QRS interval to the average 

energy of the whole AA. Thus, the higher VR may be caused 

by the greater QRS residua implicating that the AA estimation 

performance is worse. And, the S is defined as the correlation 

coefficient between the original AF ECG and the estimated 

AA in T-Q interval [13] and this measures how much the AA 

estimation method preserves the atrial waveform in non-QRS 

interval. For the evaluation of our algorithm with 

monomorphic AF ECGs, 5 real AF ECGs extracted from Ann 

Arbor Electrogram Libraries (AAEL) Database including 

intra-cardiac electrogram (EGM) were used. And, for the 

evaluation with bimorphic AF ECGs, 5 real AF ECGs 

collected from the AAEL database and the MIT-BIH Atrial 

Fibrillation database resampled at 1000Hz. To deal with two 

types of VA morphologies, the proposed ESAF was expanded 

as shown in Fig. 2.  
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Figure 2.  Block diagram of the expaned ESAF  for bimorphic AF ECGs 

This expanded ESAF (eESAF) consists of two ESAFs 

placed in parallel and the primary input, AF ECG, was 

designed to be fed to either of them. And, it was decided by 

whether the current RR interval was less than 80% of the 

averaged RR interval. 

IV. RESULTS AND DISCUSSION 

First, for monomorphic AF ECGs, we have examined 
whether the proposed algorithm can estimate AA well. An 
example of AA estimation resulted by the proposed algorithm 
is depicted in Fig. 3 including an original AF ECG, an 
intra-cardiac EGM, an estimated AA by the ABS method, and 
an estimated AA by the proposed ESAF. This figure helps us 
infer the performance of our algorithm and we can recognize 
the tendency that both the estimated AAs by the ABS and by 
the ESAF seem to be highly correlated with the intra-cardiac 
EGM.  

 

 

Figure 3.  Comparisions of the intra-cardiac EGM and AA estimation 
results by the ABS and by the ESAF  

However, in the QRS intervals, the maximum of estimated 
AA by our algorithm shows lower values than that of the 
estimated AA by the ABS and it can be confirmed by the 
numeric values of VR summarized in Table I. As shown in 
Table I, our algorithm remains less ventricular residua than the 
ABS but the similarity in T-Q interval looks quite similar each 
other. Even with much less computational cost, this result is 
quite comparable to the result of the state-of-art works [9, 10]. 
In spite of not presenting results, it takes 5~10 seconds for our 
algorithm to be adjusted so to work properly. Additionally, we 
have compared the rate of estimated AA (5.869±1.38Hz) with 

that of intra-cardiac EGM (5.83±1.38Hz) and the error was 
found as small as 0.12±0.17Hz. 

TABLE I.  SUMMARIZED PERROMANCE INDEXES OF ESAF AND ABS 

recording 
VR S 

ESAF ABS ESAF ABS 

A181345 2.143 2.977 0.969 0.976 

A221734 0.578 1.038 0.977 0.965 

A224135 1.749 2.150 0.953 0.954 

A286063 1.100 1.824 0.998 0.998 

A377b91 0.930 1.149 1.000 0.999 

mean(std.) 1.300(0.635) 1.828(0.792) 0.979(0.020) 0.978(0.020) 

 

If an AF ECG has bimorphic VAs, the arrhythmic VA 
causes the larger ventricular residua than the NSR VA 
regardless of methods. To overcome this limitation, we also 
proposed the eESAF containing two different ESAFs (Fig. 2). 
For bimorphic VAs, this eESAF tends to remain much less 
ventricular residua than the ESAF as well as than the ABS and 
an example of eESAF result is shown in Fig. 4. In this figure, 
we have also inserted VR values for each three different 
methods; the ABS, the ESAF, the eESAF. Observing the 
signals and the numeric values of VR within dash-lined areas, 
the AA estimation by the eESAF looks to have superiority 
over the others. This superiority can be reconfirmed by Table 
II presenting summarized VRs of all three methods. In all 
recordings, the VR of ABS method shows the largest mean 
and standard deviation and this may be caused by the fact that, 
for the NSR VAs, the ABS returns similar level of VR to the 
other method but, for the arrhythmic VAs, results in much 
bigger level of VR than the other methods. For the arrhythmic 
VAs, the eESAF shows 121% less VR than the ABS and 70% 
less than the ESAF on average. Finally, we can conclude that 
the eESAF works effectively in case of the AF ECGs with 
bimorphic VA. 

 

 

Figure 4.  An example of VR comparason among the ABS, the ESAF and 
the eESAF for bimorphic VAs 

V. CONCLUSION 

In this study, we developed a model of ECG and proposed 

a VA cancellation algorithm based on with this model 

background ESAF for single-lead ECGs. Comparing our 

proposed algorithms with the most widely used method - the 

ABS method, it showed quite good performance for AF 
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ECGs. And, its performance was even comparable to that of 

the state-of-art works [9, 10]. In the aspect of computation 

cost, it needs such a small computation cost as the ABS does 

so that it can be implemented in real-time. In case of AF ECG 

with bimorphic VA, we could cancel out both type of VA 

successfully with simple modification while the ABS could 

not. We expect our algorithm to replace the ABS method. 

TABLE II.  SUMMARIZED VRS OF ABS, ESAF AND EESAF 

recordings 
VR 

ABS ESAF eESAF 

MIT203* 3.419(5.700) 2.259(3.068) 1.790(1.204) 

MIT210* 2.083(5.190) 1.521(3.076) 1.168(0.899) 

A182430** 4.232(5.054) 3.609(4.886) 1.105(1.193) 

A224135** 2.510(6.234) 2.068(3.011) 1.700(0.962) 

A239140** 1.818(7.541) 1.392(4.232) 0.608(0.489) 

* recordings from MIT-BIH Atrial Fibrillation database 

** recordings from Ann Arbor Electrogram Libraries (AAEL) Database 
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