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Abstract—In the electroencephalogram (EEG) or 

magnetoencephalogram (MEG) context, brain source 

localization (beamforming) methods often fail when the 

number of observations is small.  This is particularly true 

when measuring evoked potentials, especially when the 

number of electrodes is large.  Due to the nonstationarity of 

the EEG/MEG, an adaptive capability is desirable.  Previous 

work has addressed these issues by reducing the adaptive 

degrees of freedom (DoFs). This paper develops and tests a 

new multistage adaptive processing for brain source 

localization that has been previously used for radar 

statistical signal processing application with uniform linear 

antenna array. This processing, referred to as the fast fully 

adaptive (FFA) approach, could significantly reduce the 

required sample support and computational complexity, 

while still processing all available DoFs. The performance 

improvement offered by the FFA approach in comparison to 

the fully adaptive minimum variance beamforming (MVB) 

with limited data is demonstrated by bootstrapping 

simulated data to evaluate the variability of the source 

location.   

Keywords-component; Brain source localization; fast fully 

adaptive processing; EEG signal  

I.  INTRODUCTION  

Estimating the locations of sources of electrical 

activity in the brain is an important problem in electro- 

and magneto-encephalography (EEG and MEG). A large 

variety of algorithms have been developed for solving the 

EEG/MEG source localization problem, including 

multiple signal classification (MUSIC) [1], [2], minimum 

variance beamforming (MVB) method [3], sLORETA 

[4], and dipole fitting [5]. The EEG/MEG source 

localization problem is particularly difficult because the 

signal-to-noise ratio (SNR) is typically very low, the 

noise is spatially colored and often temporally 

nonstationary, and the number of data samples containing 

the activity of interest is often very limited. Scenarios 

involving both low SNR and a small number of 

observations are common, e.g., in the important case of 

measuring evoked potentials. 

Localization methods that rely on estimating the 

second order statistics of the measured data or related 

quantities (such as signal/noise subspaces) such as 

MUSIC [1], MVB [3], and maximum likelihood dipole 

fitting (MLDF) [5] can provide excellent performance 

given a sufficient number of observations. However, in  

limited data scenarios the estimated second order statistics 

or subspaces possess considerable variance and 

localization performance deteriorates. The data 

requirements for such algorithms generally increase as the 

number of spatial channels (or electrodes) increase. For 

example, obtaining an accurate estimate of the sample 

covariance matrix to estimate the spatial covariance 

matrix of the data for MVB with N channels (N DoFs) to 

achieve statistically stable source location estimates 

requires at least 2N statistically independent data [3]. 

Consequently, the potential advantages of having large 

numbers of spatial channels are offset by the requirements 

for increased data.  

To address these issues, researchers have developed 

techniques with lower complexity and fewer adaptive 

DoFs. One of these approaches is partial adaptivity, e.g., 

[6], in which the number of adaptive DoFs is reduced to 

meet the constraints on available data. A closely related 

approach is beamspace processing, e.g., [7], in which the 

sensor space data is mapped into a lower dimensional 

space using a linear transformation before applying the 

desired statistical signal processing algorithm. Reducing 

the adaptive DoFs yields corresponding reductions in the 

required sample support and computational load, at the 

expense of performance and reduced source 

discrimination.   

An alternative approach is the Fast Fully Adaptive 

(FFA) method that exploits all available degrees of 

freedom while simultaneously reducing computational 

complexity and required sample support. This method has 

previously been used in the radar context for detecting 

targets buried in clutter using measured high frequency 

surface wave radar data with uniform linear antenna arrays 

[8], [9]. This multistage adaptive processing technique 

draws its inspiration from the butterfly structure of the 

Fast Fourier Transform (FFT). Essentially, the FFA 

approach sub-divides the N channels into several sub-

channels of smaller dimensions, and then uses the fully 

adaptive approach within each such sub-channel to 

compute an intermediate statistic. The key idea underlying 

the FFA approach is that the outputs from each stage form 

the data matrix of the subsequent stage. This process of 

partitioning the newly formed data matrix, followed by 

adaptively processing each resulting partition, is repeated 
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until the original 1N   dimensional (channel) data matrix is reduced to a single final statistic whose magnitude can 

be compared against a chosen threshold to determine if 

there is any activity at the location and time under test. 

Hence, as with the FFT algorithm, the FFA achieves 

lower complexity via a divide-and-conquer approach. A 

distinct advantage the FFA approach has over other 

conventional low-complexity beamforming methods, such 

as the beamspace approach, is that all the adaptive DoFs 

are used at every stage. 

In this paper we design an FFA method for localizing 

brain sources from an EEG signal. The performance of 

this method is then evaluated by comparison with the 

MVB approach by applying the bootstrap [10] to the 

simulated EEG signal.   

II. SYSTEM MODEL AND FULLY ADAPTIVE APPROCH 

Here we design the FFA approach in the context of an 

EEG recording system with N electrodes. The N

electrodes record the brain electrical activity over a short 

period of time T with the sampling frequency of f, so the 

number of time samples is M T f  . Hence the data 

can be organized as a N M  data matrix x .  

Let ( )kx be an 1N  vector composed of the potentials 

measured by the electrodes at a given time instant k 

associated with a single dipole source. If this source has 

location represented by the 3 1  vector q , then 

( ) ( ) ( )k x H q m q , where the elements of the 3 1 vector 

( )m q  are the x, y and z components of the dipole moment 

at the time instant k that x  is measured and the columns 

of the 3N   lead field matrix ( )H q represent solutions to 

the forward problem. That is, the first column of ( )H q  is 

the potential at the electrodes due to a dipole source at 

location q having unity moment in the x direction and 

zero moment in y and z and directions. Similarly, the 

second and third columns represent the potential due to 

sources with unity moment in y and z directions, 

respectively. 

The medium is linear so the potential at the scalp is 

the superposition of the potentials from many active 

neurons. Suppose ( )kx  is composed of the potentials due 

to active dipole sources at locations , 1, 2, ...,
i

i Lq and 

noise. Then 

1

( ) ( ) ( )

L

i i

i

k


 x H q m q n  ,                                           (1) 

where n  is the measurement noise. Note that ( )kx  does 

not contain any temporal information since it is obtained 

by sampling all electrodes at a single time instant k. It 

represents the spatial distribution of the measured 

potential at a sampling time. A linear processor uses a 

spatial 3N   weight (filter) matrix 
0

( )W q  to form a 

filtered output at location 
0

q , i.e., 

 T

0
( ) ( ) ( ).k ky W q x

                                                    
  (2) 

The optimal weight matrix, in the minimum output 

variance sense under the constraint T

0 0
( ) ( ) W q H q I  is 

given by 1 T 1 1

0 0 0 0
( ) ( )( ( ) ( ))

  
W q R H q H q R H q [3], 

where R is the covariance matrix of the noise, 
T

E ( )R nn , and T denotes the transpose of a matrix. In 

practice, the noise covariance matrix is unknown and must 

be estimated using training data as  

T

1

1ˆ ( ) ( )

M

k

k k
M 

 R x x  .                                                    (3) 

However, as mentioned earlier, when the number of 

electrodes is large, an adequate number of time samples 

may not be available to estimate R accurately. This makes 

the estimation impractical.                          

III. FAST FULLY ADAPTIVE APPROACH  

In this section we focus on the development of the FFA 

approach. The FFA scheme is of relatively low 

complexity, with the distinct advantage that the entire data 

is adaptively processed at every stage. The stages of FFA 

approach are illustrated in Fig. 1. In the first stage we 

adopt a divide and conquer strategy that partitions the N 

channel data vector x  at each time instant k (k is removed 

for simplicity) into 
s

N smaller vectors of dimensions 'N  

where ' /
s

N N N is chosen corresponding to the 

available training data. Importantly, 'N N . We then 

apply the fully adaptive approach algorithm on each of 

these partitions which results in a new 3
s

N  matrix y

whose entries are composed of the complex output 

statistics, using (2), of the corresponding fully adaptive 

processes. The resulting 3
s

N  data-matrix y is again 

repartitioned (not necessarily in the same way as the 

original data vector) and each partition is processed by the 

fully adaptive approach yielding the next stage of outputs. 

This procedure is repeated until a final statistic is 

obtained. Note that in each stage the noise will be 

suppressed in each partition by the fully adaptive approach 

yielding an attenuated residual noise in the forthcoming 

processing stage. 

Here we formalize the approach.  At each time instant 

k the 1N   data vector x  and the 3N   lead field matrix 

H  for the location under test, q  ( q  is removed for 

simplicity) are partitioned into 
s

N submatrices of size 

' 1N   and ' 3N  , respectively.  Denote the n
th

 partition of 

the data and lead field matrix as 0

n
x  and 0

n
H , 

1, 2, ...,
s

n N . The superscript 
0 

specifies that we are 

currently processing the starting (zeroth) stage in the tree-

like structure. The fully adaptive approach is used within 

each partition. Consider the n
th

 partition, with data matrix 
0

n
x of size ' 1N  . The sample support required to estimate 

the relevant covariance matrix, 0

n
R , is reduced from 2 N

to approximately 2 'N , with corresponding reductions in 

the computational load to solve the resulting matrix 
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Fig. 1. The multistage representation of the FFA method. 

 

equation. The weight matrix for the n
th

 partition is given 

by ' 3N  weight vector 0 0 1 0ˆ( )
n n n


W R H . The intermediate 

statistic (the 3 1 vector 1

n
y , for the next stage, 

corresponding to this n
th

 partition is given by
 

1 0 T 0 0 T 0 0 T 0 1 1
( ) ( ) ( )

n n n n n n n n n
    y W x W n W H m n H m ,  (4) 

where 0

n
n is the noise component in the n

th
 partition which 

reduces to 1

n
n  in the next stage, 1

n
H  is 3×3 and m is the 

dipole moment at location q .   

A consideration in adapting the FFA method from the 

radar case to the BSL case is that the outputs y are 3 1

vectors instead of scalars. We address this issue as 

follows. From (4), the second stage comprises a 3
s

N 

data matrix 
1 1 1 1

1 2
( , , ..., )

sN
x y y y containing the brain 

activity at location q  but with new lead field matrix 
1 1 1 1

1 2
( , , ..., )

sN
H H H H  of dimension 3 3

s
N   .  In the 

second stage, first the lead field matrix 1
H is reshaped to 

a 3 3
s

N  matrix 1
H by concatenating   the 

s
N  matrices 

of dimension 3 3 . Similarly, the data matrix 1
x  is 

reshaped to a 3
s

N vector 1
x . Therefore the sample 

support required to estimate the relevant covariance 

matrix is three times of the first stage. The algorithm 

iterates the partitioning and processing in a similar 

fashion to the second stage until a single final statistic is 

obtained.  Then the output of the final stage “P” is 

calculated by T
( )

P P P
y W x .    

The expected advantages of the FFA are clear: the use 

of the divide-and-conquer approach allows for all DoFs to 

be used while significantly reducing both the sample 

support requirements and computation load. However, it 

is important to note that the FFA scheme does not lead to 

an equivalent model of the optimal fully-adaptive method 

which solves for all N DoFs simultaneously. As a result, 

if adequate sample support were available, some 

performance degradation is expected. However, for the 

case where the number of channels is large and so the 

sample support is limited, the optimal fully adaptive 

approach is not implementable and the FFA becomes a 

strong practical alternative. The method is readily made 

adaptive by computing R, W, and y in a time-recursive 

fashion. 

IV. PERFORMANCE EVALUATION 

In this section we conducted a simulation for EEG 

measurements in the 4-layer spherical head model [11] in 

order to illustrate the performance of our methods for 

practical systems. The nominal radii and conductivities of 

the 4 layers corresponding to the brain, CSF, skull, and 

scalp, were chosen to be  [7.1, 7.2, 7.9, 8.5] cm  and

[0.33,1, 0.0042, 0.33] S/m , respectively [12]. To simulate 

our source, we chose a current dipole located at 

[ , , ] [ 3, 5,-2] cmx y z   . The x, y, and z components of the 

dipole moment in time are defined as:  

2 2

2 2

( / 50 3) ( / 50 4 )

( / 50 4 ) ( / 50 3)

( ) 0.3 0.13

( ) 0

( ) 0.15 0.5

t t

x

y

t t

z

m t e e

m t

m t e e

   

   

 



 

 .                               (5) 

In (5), t is continuous with a duration of 400 ms. We 

sampled these signals at a frequency of 200 Hz, thus 

obtaining 80M  time samples for the computer 

simulations. We use a standard 10–10 EEG configuration 

of 81N  channels for the lead field matrix. The lead field 

matrices ( )H q are calculated for horizontally located 

cross-sections at 1 cm intervals. In each of the sections, 

lead field matrices are determined on a uniform grid with 

1 cm spacing in each direction. The vertical location of 

each cross section is represented by a position on a z-axis, 

with increasing height corresponding to increasing values. 

Within each cross section the x -axis is front–back with 

front positive and the y-axis is right–left with left positive. 

In order to evaluate the performance of our method we 

added uncorrelated (in time and space) normally 

distributed random noise with SNR of 5dB. The result of 

the simulations using both FFA and MVB approaches are 

shown in Fig. 2. As is clear from Fig. 2(a), the MVB 

approach leads to a broad spatial spread in brain activity. 

This comes from the fact that the number of data needed 

to calculate the covariance matrix accurately for this case 

is 2 160N  , while the available time samples are 80. This 

lack of data leads to an inaccurate estimation of 

covariance matrix and so the output.  Figure 2(b) shows 

the same result using the FFA approach with the 

partitioning sequence of 1 2 3 4
[ ' , ' , ' , ' ] =[3, 3, 3, 3]N N N N , 

where '
i

N shows the length of the partitions in the i
th

 

stage. The number of time samples needed for calculating 

the covariance matrix in this case is 

2 3 max( ' ) 2 3 3 18
i

N      , which is about one fourth 

of the number of available time samples 80M  . 

Therefore, the covariance matrix can be calculated 

accurately and so the FFA method shows just one peak at 

the source location with the amplitude of about 100 times 

larger than MVB method.   

To further investigate the performance of the FFA 

algorithm we evaluate the algorithm when a spike activity 

is injected at a particular location of a brain in a specific 

time sample. Bootstrapping is employed to assess the 

variability of the source location and time estimates when 

a spike source is placed in the same location but at 

different time instances, for data records of varying 

lengths. Figure 3 presents the percentages of the 100 

time

electrodes
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resamples that are localized within 1 cm of the true 

location and within the true time sample, as a function of 

the number of observations for the MVB and FFA 

algorithms. This measures localization consistency for 

each method across the resamples. The results for MVB 

between 50-80 samples are not computed because the 

estimated covariance matrix is singular in this region (and 

thus is not invertible) and the performance of this method 

cannot be evaluated. As the figure shows, the consistency 

of the localization estimates is greatly improved by FFA 

processing with small numbers of time samples and is 

considerably less improved when more than 140 time 

samples are employed.  

V. CONCLUSION 

In this paper a fast fully adaptive approach is designed 

for brain source localization.  This method uses a divide-

and-conquer strategy to significantly reduce the 

computational complexity and sample support 

requirements of the fully-adaptive scheme. The 

performance of the FFA scheme is tested by applying the 

bootstrap to the simulated EEG data. The FFA brain 

localization showed a reduced variability in comparison 

to the fully adaptive MVB approach. The improved 

performance of the FFA schemes arises at the cost of 

increased computational complexity. This is because of 

the multiple, although smaller, fully adaptive processes 

that must be executed. One could envision a parallel 

implementation of these processes to reduce the 

computational time per brain location. However, it is 

important to note that the FFA scheme addresses the 

fundamental limiting factor in fully adaptive 

beamforming, which is the limited quantity of available 

training data. 
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Fig. 2. The 2D plot of the brain activity at z=2 cm and t = 145 ms for (a) 
MVB and (b) FFA approaches. 

 

 
 

Fig. 3. Percentage of bootstrap resamples for which the source is 
localized within 1 cm of the true location for the MVB and FFA 

methods. 
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