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Abstract— This paper presents an algorithm for removing
power line interference in neural recording experiments. It
does not require any interference reference signal and can
reliably track interference changes in frequency, phase, and
amplitude. The method includes three major steps. First, it
employs a robust frequency estimator to obtain the fundamental
frequency of the interference. Second, a series of discrete-time
oscillators are used to generate interference harmonics, where
harmonic phase and amplitude are obtained using the recursive
least squares (RLS) algorithm. Third, the estimated interference
harmonics are removed without distorting the neural signals at
the interference frequencies. The simple structure and adequate
numerical behavior of the algorithm renders it suitable for real-
time implementation. Extensive experiments based on both in-
vivo and synthesized data have been performed, where a reliable
performance has been observed.

I. INTRODUCTION

Extracellular neural recording using microelectrode arrays
can provide high fidelity signals of both single- and multi-
unit activities and field potentials. Single- and multi- unit
activities are spike trains that have a dominant spectrum
in 400-5000 Hz, while local field potentials (LFPs) are
aggregated from a large number of synchronized synaptic
activities with a dominant spectrum in 0.1-200 Hz. Both
spike trains and field potentials are useful for information
decoding; however, due to better tolerance to neural interface
degeneration and glial cell encapsulation, field potentials
have been receiving increasing attention in long-term brain
machine interface (BMI) experiments [1].

Recorded field potentials are frequently contaminated with
power line interference (also called 50/60 Hz noise), which
could be large in magnitude and may severely corrupt the
information content of LFP signals. For example, Gamma
oscillations (>30 Hz) which are correlated with a wide range
of cognitive and sensory processes, may be distorted by
the interference. Therefore, adequate removal of interfering
components would be an important preprocessing stage to
achieve a reliable analysis of LFP signals.

Different solutions such as using battery power, high
common-mode rejection ratio (CMRR) amplifiers and Fara-
day cage, can be used to attenuate the interference and
avoid electronic saturation. In addition, various algorithms
have been reported to remove power line interference. From
application aspects, a robust and real-time algorithm which
can eliminate the interference without distorting the LFP
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signals is desirable. Along this line, Wang and Roe [2]
have recently employed an adaptive noise canceller (ANC)
to remove the interference in neural recording. The method
was first proposed by Widrow for processing ECG signals [3]
and works well if given a high quality interference reference
signal, which is not always available in experiments.

In this paper, we propose a novel algorithm for power line
interference cancellation. The algorithm requires no interfer-
ence reference signal and it can reliably track interference
changes in frequency, phase, and amplitude at 50/60 Hz
and the harmonic frequencies. Based on different statistical
characteristics of the interference components and LFP oscil-
lations, the algorithm can eliminate the interference without
distorting the LFP signals at the interference frequencies.
Further efforts have been spent to reduce the computational
requirement of the algorithm to target real-time, low-latency
ASIC implementation. Extensive experiments based on both
in-vivo and synthesized data have been performed, where a
reliable performance has been observed.

The rest of the paper is organized as follows. Section
II gives the problem overview and the algorithm frame-
work. Section III presents the algorithm details. Section
IV describes the experimental results on both in-vivo and
synthesized data. Finally, Section V concludes the paper.

II. PROBLEM OVERVIEW AND ALGORITHM FRAMEWORK

A. Problem Overview and Application Related Challenges

Power line interference can be modeled as the sum of
harmonic sinusoids with undetermined frequencies, phases
and amplitudes. The problem of unsupervised interference
cancellation involves the estimation of frequencies, ampli-
tudes and phases of interference sinusoidal components and
subsequently removing the estimated interference from the
recorded signal. Various methods have been proposed for
interference removal from biomedical signals [4], [5], [6];
however, there are a few application related challenges that
affect the performance of these methods when applied to
neural recording. For example, the spectrum of neural data
follows 1/fx (1<x<3) distribution that violates the assumption
of white Gaussian noise made in many algorithms and may
cause algorithm malfunction. Moreover, neural signals are
non-stationary and there could be transient or sustained
LFP oscillations appearing at the interference frequencies
that should remain intact. For example, [4] used adaptation
blocking in the QRS period of ECG signals to tackle non-
stationarity; however, this method is not applicable to neural
signals because the on/off period of LFP oscillations cannot
be easily detected in the presence of interference. Last, the
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algorithm is preferable to be efficient in hardware implemen-
tation, targeting real-time and low-latency preprocessing of
neural signals in less constrained environments.

B. Algorithm Framework and Contributions

In this section, a few important features of the algorithm
are summarized. First, the algorithm yields a robust and
fast estimation of the interference fundamental frequency,
which is hardly affected by the colored spectrum of the
input signal. Based on the estimated fundamental frequency,
the selected interference harmonics are estimated and then
removed accordingly. Second, the proposed algorithm allows
using different rates for frequency and amplitude adaptation,
which result in an accurate frequency estimation while
reliably tracking interference amplitude fluctuations. As a
result, the algorithm can reliably work in situations where
the appeared harmonics may vary in frequency, phase, and
amplitude. Third, the proposed algorithm has been tailored
for fixed-point operation and can be efficiently implemented
in both software and hardware.

III. METHODS

Recorded neural data can be modeled as

y(t) = s(t) + p(t) (1)

where, y(t) is the recorded signal, s(t) is the actual signal
(neural signal and neural noise) and p(t) is the power line
interference. s(t) has a 1/fx power spectrum and p(t)
consists of a set of harmonic sinusoidal components with
unknown frequencies, phases and amplitudes as shown in
(2a)

p(t) =

M∑
k=1

ak cos(kωf t+ φk) =

M∑
k=1

hk(t) (2a)

with
hk(t) = ak cos(kωf t+ φk), (2b)

where M is the number of harmonic components appearing
in p(t), ωf is the fundamental frequency, and ak and φk are
the amplitude and phase of the kth harmonic, respectively.

Let ω̂f , âk, φ̂k, ĥk(t) and p̂(t) denote the estimate of ωf ,
ak, φk, hk(t) and p(t), respectively. Hence, the interference-
free signal ŝ(t) is obtained by

ŝ(t) = y(t)− p̂(t). (3)

The following approach is proposed to obtain p̂(t). First,
fundamental frequency is estimated by using a fast and
numerically well-behaved lattice-based frequency estima-
tor. Subsequently, harmonic signals are obtained by using
discrete-time oscillators and their amplitudes and phases (i.e.
âk and φ̂k, respectively) are adapted using the recursive
least squares (RLS) algorithm [7]. Finally, the estimated
interference is subtracted from the signal. The structure of
the proposed method is shown in Fig. 1.

A. Fundamental Frequency Estimation

Two stages of processing are used to obtain the fundamen-
tal frequency of the interference.

Fig. 1. Block diagram of the proposed structure. y(t) is the contaminated
input signal and ŝ(t) is the output interference-free signal.

1) Initial Bandpass Filtering: Before feeding the signal
to the frequency estimator, a second order infinite-impulse-
response (IIR) bandpass filter with passing band of 40-70 Hz
is utilized to attenuate unwanted frequency components due
to the following two reasons: a.) the spectrum of s(t) and
hence y(t) in (1) follows 1/fx distribution that may lead to
a biased estimate of the frequency in some frequency esti-
mators. b.) when higher harmonics exist in the interference,
direct application of a single frequency estimator may lead
to the estimation of higher harmonic frequencies instead of
the fundamental frequency.

2) Frequency Estimation: After bandpass filtering, fre-
quency estimation is performed by using a simplified lattice-
type adaptive notch filter (ANF) [8] shown in Fig. 2(a). Lat-
tice adaptive filters are known to have fast convergence and
attractive numerical and stability properties when compared
with direct-form filters that make them more suitable for
finite-precision and real-time implementation [8], [9]. The
parameters κf and α in Fig. 2(a) are reflection coefficients;
κf is related to notch frequency ω̂f by (4) and α controls
the notch bandwidth. The value of α should be chosen close
to unity to achieve a narrow notch. Frequency estimation is
obtained by adapting κf in the structure of Fig. 2(a). In this
work, Burg algorithm [8] is used to adapt κf due to its fast
convergence and guaranteed stability. κf is defined as

κf = cos ω̂f (4)

The algorithm to adapt κf in the structure of Fig. 2(a) is:

κf (n) =
C(n)

D(n)
(5a)

C(n) = λfC(n− 1) + f0(n)b0(n) (5b)
D(n) = λfD(n− 1) + 0.5(f20 (n) + b20(n)) (5c)
C(0) = D(0) � 0, 0 � λf < 1 (5d)

where λf is the forgetting factor and κf (n) is the estimated
parameter associated with the nth sample. The relationship
between κf (n) and the fundamental frequency is specified
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(a) (b)
Fig. 2. Signal flow graph of (a) Lattice frequency estimator and (b)
Discrete-time Oscillator.

by (4). After estimating κf , harmonic frequencies can be
readily obtained without inverse trigonometric calculations
as discussed later.

B. Harmonic Estimation

After estimating κf , the algorithm proceeds to the esti-
mation of the harmonics of the interference. In this work,
discrete-time oscillators are used for harmonic estimation
that is to avoid trigonometric function calculations thus
reducing complexity. Furthermore, this technique allows in-
dependent control of frequency and amplitude adaptation via
using different adaptation rates to achieve accurate frequency
estimation while reliably tracking amplitude variations.

Among different types of oscillators, a Digital Waveguide
Oscillator [10] is chosen due to the following reasons.
First, it provides quadrature outputs which are exploited
to simplify the phase and amplitude adaptation algorithm.
Second and more importantly, the oscillator output frequency
can be directly controlled by cosω where ω is the oscilla-
tion frequency. This property is desirable as it allows the
frequency estimator output κf to be directly used in the
discrete oscillators in order to adjust their frequencies. These
considerations eliminate the need for trigonometric function
calculation hence significantly reducing the complexity of
the algorithm. Fig. 2(b) shows the signal flow graph of the
oscillator. The parameter κk in Fig. 2(b) is defined as

κk = cos(kω̂f ), for k = 1, 2, · · · ,M (6)

where kω̂f is the estimated frequency of the kth harmonic
component. The output of each oscillator is of the form

uk(n) = vk sin(kω̂fn) (7a)
u′k(n) = v′k cos(kω̂fn) (7b)

where vk and v′k are the magnitudes and kω̂f is the oscilla-
tion frequency; all pertaining to the kth harmonic. It should
be noted that for each k, vk and v′k are constant, however,
not equal to each other. In order to keep vks and v′ks fixed
throughout the oscillation, gain control is applied in each
iteration [10].

In order to override trigonometric function calculation for
obtaining ω̂f and κks, the values of κks in (6) are recursively
calculated through Chebyshev method as

κk = 2κ1κk−1 − κk−2, for k = 2, 3, · · · ,M (8a)

where
κ0 = 1, κ1 = κf = cos ω̂f (8b)

Fig. 3. Adaptive filter structure used for phase and amplitude adaptation.
The filter weights are adapted by using RLS algorithm.

The values of κks are then used to adjust the operation
frequency of the oscillators.

C. Phase and Amplitude Estimation

The phases and amplitudes of the generated sinusoids are
not necessarily the same with their corresponding interfer-
ence components; therefore, an additional step is required for
phase and amplitude estimation. Since a pair of orthogonal
signals (uks and u′ks) are available from the output of
each oscillator, the phase and amplitude adaptation can be
expressed as a simple linear combination of the orthogonal
outputs. For this purpose, an adaptive linear combiner is
utilized which is shown in Fig. 3. For each harmonic k,
the optimal weights can be obtained by minimizing the
exponentially weighted squared error between ĥk(t) and
y(t). This can be done by using the RLS algorithm [7] where
uk(n) and u′k(n) serve as the inputs of the adaptive linear
combiner. The estimated harmonics, denoted by ĥk(t) in
(2b), are then subtracted from y(t) to obtain the interference-
free signal ŝ(t).

IV. SIMULATION RESULTS

A. Evaluation on Synthesized Data

For synthesizing contaminated neural recording data, har-
monic sinusoidal components with random fundamental fre-
quency around 60 Hz were added to an interference-free
signal (“interference-free” signal is referred to the neural
signal which was recorded in a controlled condition where
power line interference was very small). The frequencies,
amplitudes and phases of the components were randomly
chosen and then perturbed to evaluate the tracking capability
of the method. Fig. 4 shows the power spectral density (PSD)
of a sample signal before and after interference cancellation.
As can be seen in Fig. 4(c), all the harmonics are significantly
attenuated. To illustrate the drawback of using notch filters,
the result of notch filtering at 60 Hz and its multiples is
also presented. As shown in Fig. 4(d), the notch filters
failed to completely suppress the harmonics because the
actual fundamental frequency was not exactly fixed at 60 Hz.
Moreover, the notch filters have severely distorted the signal
at frequencies around 60 Hz and its harmonics. Fig. 4(e)
illustrates the fast convergence of the algorithm where the
estimated components (frequency, amplitude, phase) reach
the steady state within 200 ms.

In addition to the PSD results shown in Fig. 4, quantitative
analysis have been carried out to evaluate the performance
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Fig. 4. Simulation results. (a) PSD of the interference-free recordings used
in the simulation. (b) PSD after adding synthesized interference. (c) PSD
after using the proposed method. Note that all the harmonics are removed
while the signal retained (d) PSD after using conventional notch filter. (e)
The synthesized (dashed red) and the estimated interference (solid blue).

of interference rejection. Signal-to-interference-ratio (SIR) is
defined as the power of the original signal to the power of
the synthesized interference. For the heavily contaminated
samples (SIR<0 dB), the achieved SIR improvement was as
high as 60 dB; while for the samples with small power line
interference (SIR>30 dB), the SIR improvement remained
positive, implying that the algorithm works reliably and adds
very small distortion to LFP signals.

B. Evaluation on Real Data

The second experiment has been carried out on in-vivo
data which were recorded by a Plexon system. Fig. 5 shows
the PSD of the signal before and after filtering. Large
interference components can be seen in Fig. 5(a) at around
60 Hz and its harmonics. It can be seen from Fig. 5(b)
that the interference has been completely removed from the
contaminated signal. A segment of actual and filtered signal
in the Gamma band (> 30 Hz) is also shown in Fig. 5(c).

V. CONCLUSION

A robust and efficient power line interference cancellation
algorithm has been proposed. The proposed algorithm can
reject 50/60 Hz noise and its harmonics without producing
major distortion to the LFP signals. Moreover, the proposed
method can reliably track the fluctuations in frequency, phase
and amplitude of interference harmonics. In addition, the
low computational cost and small memory requirement of
the algorithm has made it suitable for real-time applications.
The algorithm is tested on both synthesized and in-vivo data.
The results from the synthesized data have shown significant
improvement of SIR. In the experiments with the in-vivo
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Fig. 5. Results of the experiment with real data. (a) PSD of the
contaminated signal. (b) PSD after filtering by the proposed method where
the LFP oscillations retained. (c) Gamma band (> 30 Hz) oscillations, from
top to bottom: contaminated signal, signal after interference cancellation,
estimated interference.

data, the interference has been largely attenuated while the
LFP signals have been preserved.
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