
  

 

Abstract— Granger Causality (GC) can detect directed 

influence of signals between multiple locations. Nonlinear GC 

has been used to analyze neural systems. However, the weakness 

of the nonlinear method is that frequency content is lost at the 

expense of a relatively accurate overall GC estimate. This paper 

investigates how nonlinear GC in different frequency bands can 

be obtained by the proper linearization process. When the error 

between the nonlinear fitting signal and the linear fitting signal 

falls below a specific threshold, the frequency components can 

be approximated. This frequency decomposition model does not 

rely on the formation of a nonlinear process and was evaluated 

on a brain computer interface (BCI) application using 128 EEG 

electrodes, for the decoding of the intended arm reaching 

movement in the left or right directions. The center of strength 

for each GC map in each frequency band, ranging from 3-12Hz, 

was also computed. The centers of strength associated with left 

and right motor intention were found to be highly separable in 

the theta rhythm (3-8Hz) only. 

I. INTRODUCTION 

The Granger Causality (GC) analysis [1] has been 
developed to explore the directional properties in complex 
dynamics consisting of multi-variable observations. It has 
been applied to many biological and physical system 
phenomena [2]. A linear GC measure can define the causal 
relationship between a specific location and its nearby units by 
creating linear regressive predictive models and computing 
the decrease in the prediction error if the information from 
neighboring units is included.  However, the linearity 
associated with this GC approach limits its applicability on 
many systems where the relationship between units could be 
nonlinear. One alternative method to incorporate the 
nonlinearity characteristics is through the bivariate GC 
analysis [3]. Our group has previously presented a general 
framework of extracting only the relevant information from 
the nonlinear causality map based on a statistic-based 
thresholding method.Its effectiveness was illustrated in a brain 
computer interface (BCI) application [4] for the decoding of 
the motor intention of human subject undergoing reaching 
movements [5]. We also defined a measure that quantifies the 
uniqueness of the GC vectors with respect to the decoded 
directions. In this study, we addressed a possible way to obtain 
the frequency information of the causal analysis, which is 
generally lost in the nonlinear GC framework. This allows the 
nonlinearity aspect of the GC detection method to be kept, 
while having the ability to obtain valuable frequency 
information related to these corresponding nonlinear 
processes between different recording locations. As a 
proof-of-concept study here, we applied this strategy to an 
identical BCI setup as [3] where the effective connectivity 
between different activated brain areas was investigated to 
decode the directions of the intended arm movement using 
different frequency bands. Previously, researchers 

distinguished the different reaching movement directions 
associated with different neuronal activities by calculating the 
power spectrum and coherence. Theta wave (3-8Hz) activity 
was observed in the posterior parietal cortex [5]. These 
observations should provide validation to our proposed 
method.  Little has been reported on how different neural 
groups are connected with respect to frequency content of the 
EEG data, especially in the context of surface EEG 
measurements. By analyzing the center of strength of the GC 
map at each frequency band, our result agrees with the 
literature that active theta rhythms (3-8Hz) were able to 
provide the strongest feature for the separation of motor 
intention direction.  

II. METHODS 

A. Experimental Protocol and Data Acquisition 

The protocol has been approved by the Louisiana Tech 
University IRB Committee. Three healthy, right-hand 
participants with normal or corrected to normal eye sight were 
recruited. They were instructed to perform 450 trials of 
reaching tasks using their right arm, to the targets located 45 
degrees to the left and to the right directions according to the 
visual cues provided by the E-Prime 2.0 system. Surface EEG 
signals were recorded using 128 channels HydroCel Geodesic 
Sensor Net electrodes (Electrical Geodesics, Inc., Eugene, 
OR). All signals were amplified and anti-aliased low-pass 
filtered at 100Hz before 256Hz sampling.  

B. Nonlinear Granger Causality Analysis 

GC can define the existence and direction of signal 
influence in high dimensional data taken from multiple 
locations. It can quantify the improvement of predicting one 
time series 

kx by incorporating other time series
ky nearby 

using the function )(f . Here k represents the index in time. 

The causal influence of a time series is computed in terms of 
the linear auto-regressive model in (1) and multi-regressive 
models in (2).  

 kkk xfx  )(1  (1) 
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In the nonlinear approach, Gaussian radial basis functions 

(RBF) [6] can be used to create multi-variable nonlinear 

models of the time series. 
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The influence of information from one location to another 
can be computed in terms of the variance of the errors 
associated with the nonlinear model. 
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The time series x and y are delay-embedded into 
D-dimensional state spaces. C is the total number of RBFs 
used. The centers of RBF are determined through fuzzy 
c-mean clustering method [7] and the coefficients are trained 
through Kalman Filter [8]. The effectiveness of this RBF 
nonlinear model has been successfully shown [3], which 
forms the basis for the frequency information extraction 
method. 

C. Frequency Decomposition 

It is possible to examine the directional causal relations in 
the frequency domain using linear GC models in a bi-variate 
system. The causal frequency influence is defined by the 
logarithm of ratio of the integral frequency response and the 
intrinsic frequency response [9].In nonlinear case however, 
there is no direct method to obtain the frequency influence 
through Fourier transform because there is no transfer function 
from the analytic expression of the RBFs. Here, a linear 
system approximation of the nonlinear GC model based on 
simple curve fitting can be applied. In detail, let 

kx be the 

original time series, 
kx~ be the predictive time series computed 

from the nonlinear model of function,
kx̂ be the linear fitting 

time series computed from the following linear regressive 
system, 
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where P is the proper order of linear system. Ideally, 
kx̂ is 

expected to be perfectly matched with
kx~ . Realistically, an 

error would exist between the two time series. If the error is 
too big, the substitute GC value would not represent the 
nonlinear GC value, which defines the sufficiency criterion. If 
the error is too small, the frequency GC would keep 
fluctuating in different orders, which defines the efficiency 
criterion. Once the mean square approximation of

k reaches 

under 20% of the mean square nonlinear predictive error
k  

from (2), the linear system is considered to be sufficient 
substitution of the nonlinear system. Frequency 
decomposition can then be performed.  

D. Order Selection for Regression Model 

A very important job in the linear approximation system is 
to determine the order for regression model. In auto-regression 
model, the most weighted coefficients distribute at the region 
closest to the predictive point. In our model, the output of the 
nonlinear function in (3) was regressively modeled. Although 
the two signals were very close, the distribution of the linear 
model coefficients may change drastically as the order 
increases. Thus, we cannot use the routine method to 
determine the order [10]. Instead, we proposed a correlation 
method for doing so. A correlation of frequency response 
between the P

th
 and (P-1)

th
 order linear fit was tracked as a 

curve. If the bi-directional correlations remained high (having 

a value greater than 0.85 for over multiple consecutive orders), 
the nonlinear model was considered to be efficiently linearized. 
Then the peak values in their corresponding frequency 
response curves were obtained. The final order of linear 
regression model was selected to be the order associated with 
a maximum peak. 

E. Observation and Quantification 

To quantitatively demonstrate this analysis in motor 

intention, the coordinates of GC center of strength is defined 

as follows: Let ),( ii yx  be the coordinates of i
th 

electrode in 

space, the coordinates of GC center of strength ),( yx is 

calculated in a similar fashion as the center of mass 

computation. 
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III. RESULTS 

A. Reliability Test 

Six Gaussian functions in a five-dimension embedding 
space were used as an initial starting point to model the 
nonlinear regressive relationships between different sEEG 
recording sites [3]. The width of Gaussian was initially chosen 
as the average spacing between each pair of Gaussian centers. 
After estimating the nonlinear predictive curve, a linear 
regressive model was setup using the proposed correlation 
method to select P. Surrogate method was used to test the 
reliability of our method. 
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Where a is a cosine wave, with normalized frequency   and b 

is the signal regressively constructed by cosine wave with the 

same frequency. Signal a has strong causal influence to b in 

 .In our experiment  was selected as 0.2. Fig.1 illustrates 

the effectiveness of our method. 

B. Order selection for Regression Model 

A high correlation between the frequency responses at 

successive linear model orders indicates that the nonlinear 

response can be somehow linearized. So far, two conditions 

for linearizing the nonlinear predictive model were discovered; 

when the fitting error fell below a specific threshold, and when 

a “plateau” existed in multiple sequential highly correlation 

model order. As illustrated in Fig. 2, the order of P = 23 to 31 

shows that the bi-directional correlation exceeded 0.85. After 

finding the peak value of the frequency response curve 

corresponding to P = 23 to 31of the linearized model (Fig. 3), 

the frequency response selected was the one having a 

maximum peak value. It should be noted that such “plateau” 

does not always exist. Only 57.08% of the electrodes’ pairs in 

our dataset were found the existence of “plateau”. If there was 

no “plateau”, a linearization of such nonlinear GC in this pair 

of signals was considered impossible and frequency 

information was not extracted. 
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C. Theta Rhythms in Motor Intention 

Using the RBF nonlinear predictive model and the linear 
approximation method described before, the causal influence 
of the intention movement in the left and right directions was 
analyzed at different frequency bands, as shown in Fig. 4. The 
GC connectivity was found to be more concentrated on the 
ipsilateral side of the intended movement direction at the low 
theta frequency range of 3-4Hz and 5-6Hz. In the frequency 
band of 7-8Hz, we found strong GC connectivity on both 
ipsilateral and contra-lateral sides, but the ipsilateral side still 
maintained slight dominance. In the frequency band of 9-12 
Hz, the GC connectivity map appeared to be evenly 
distributed across the whole posterior region. Furthermore, the 
center of strength analysis on the GC maps at low theta 
frequencies appeared to be most capable of separating and 
decoding the intended motor movement directions. The linear 
GC in frequency domain was found to be inseparable between 
the left and right directions, as shown in Fig. 5. 

IV. DISCUSSION 

GC is an important tool for the detection of directional 
information in dynamic networks such as neural interactions, 
cell culture, genetic networks and protein interaction 
networks. However, the linear formation of GC is limited by 
its inability to acquire accurate information in a highly 
nonlinear environment. The problem with nonlinear GC is the 
lack of an apparent frequency information extraction method. 
The method proposed in this research illustrates the possibility 
of finding the frequency information lost in the nonlinear GC 
model setup. Through a carefully selected linearization 
process, frequency information associated with nonlinear GC 
can be estimated. The application of intended reaching 
movement decoding was used as an illustrative example for 
the proposed strategy. Previous reports have demonstrated the 
emergence of theta waves in the active regions of the brain 
during motor intention. The areas of the established GC maps 
based on nonlinear GC method are consistent with previous 
power and coherence analysis, providing us with further 
evidence for the validation of our approach. The frequency 
information from any formation of nonlinear model can be 
extracted by our model. The nonlinear process was treated as a 
black box. The questions were: Whether the nonlinear system 
can be uniquely substituted by a linear model? And if the fitted 
model is not unique, how can the frequency content be found? 
This paper does not address the theoretical solution to the 
latter question. Instead, we quantify the likelihood of fitting 
the estimated model to the nonlinear system by computing 
whether its frequency response is in possession of maximum 
range of similarity. The frequency response is calculated 
based on the linear coefficients and predictive errors. The final 
frequency response is calculated using the linearization 
coefficients based on the nonlinear predictive error. The 
predictive curve obtained from our method is different from 
that of the direct linear GC and the frequency information of 
motor intention is more consistent with those reported from 
the BCI literature. The effectiveness of the nonlinear model 
must be ensured before this method would be successful. 
Although not explicitly shown in this paper, we have 
implemented and evaluated different preprocessing methods 
to different signals before achieving the final results in Fig. 3. 
These preprocessing methods include current source density 
transform, signal truncation and normalization. A direct 

frequency extraction from the original nonlinear process is the 
best for sure in any model, however, if it is not possible or very 
difficult to do so, our substitution approach could be an 
alternative. Finally, we found directional information from 
GC frequency decomposition to be consistent with low theta 
rhythms as suggested by previous studies of motor intention 
decoding. The success of the frequency dependent GC 
mapping in the theta range indicated a prospect of 
distinguishing the motor intention of the human subject using 
surface EEG recordings. The corresponding linear substitution 
method for frequency decomposition can overcome some 
potential weaknesses for the lack of direct frequency 
information using nonlinear GC analysis.  

 
Figure 1. A test of  reliability of  the proposed substitute method was 

applied to surrogate signals. The red curve is the frequency GC from 

signal a to signal b and blue curve is the frequency GC from signal b to 

signal a. The substitute order selected was 15. 

 

Figure 2. Correlation of the frequency response between the Pth and 

(P-1)th orderlinear model is shown for a representative electrode pair. 

 
Figure 3. Bi-directional GC frequency response corresponding to p = 

23 to 31 in Fig. 2 After finding the peak value of frequency response in 
each order, the real GC frequency response is selected as the one 

having the maximum peak value. 
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Figure 4. A summary of decoding the direction of motor intention using frequency information of substitute linear GC maps. Blue dots represent the 

electrode locations from a overhead view. Red arrows denote the directional GC vectors of each frequency band for each intended direction.he centers of 

strength are represented by black star-shape markers. The GC connectivity was found to be more concentrated on theipsilateral side of the intended 

movement direction at the low theta frequency range of 3-4Hz and 5-6Hz.  

 

Figure 5. A summary of decoding the direction of motor intention using frequency information of linear GC maps.  
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