
  

Abstract — There has recently been considerable interest 

in connectivity analysis of fMRI and scalp and intracranial 

EEG time-series. The computational requirements of the 

pair-wise correlation (PWC), the core time-series measure 

used to estimate connectivity, presents a challenge to the 

real-time estimation of the PWC between all pairs of 

multiple time-series. We describe a parallel algorithm for 

computing PWC in real-time for streaming data from 

multiple channels. The algorithm was implemented on the 

Intel XeonTM and IBM Cell Broadband EngineTM platforms. 

We evaluated time to estimate correlation for signals 

recorded with different acquisition parameters as a 

comparison to real-time constraints. We demonstrate that 

the execution time of these efficient implementations meet 

real-time constraints in most instances.  
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I. INTRODUCTION 

The motivation for this study stems from recent 
developments in fMRI and EEG. First, the advent of real-
time fMRI (rtfMRI) augurs the possibility of real-time 
diagnosis and behavioral modulation of brain activity 
based on observed time-series [1] [2]. The marriage of 
rtfMRI and connectivity measurement would hold the 
promise of the use of connectivity analysis in real-time for 
a broad range of applications. Second, as with the 
connectivity analysis performed with fMRI data, the 
correlation coefficient is a common time-series analysis 
measure used for connectivity of scalp EEG and 
intracranial EEG (icEEG) [3]. Most of the analysis 
performed on streaming data with compute-intensive 
kernels like correlation is currently performed offline. 
Adding to the challenge of this problem is the need to 
acquire the EEG, icEEG and fMRI time-series with 
increasingly greater temporal and spatial resolution. That 
is, the sensor density (number of channels of streaming 
data) and frequency of monitoring (FS measured in KHz) 
is progressively increasing.  

The pair-wise correlation (PWC or r) is a single number 
that describes the degree of relationship between two 
variables. Pearson’s Product-Moment Correlation 
Coefficient (PPMCC) is widely used to estimate r [4]. The 
computational requirement for the PPMCC estimator is 
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lower than that of other estimators [5] [6]. In this study we 
consider the extension of the PWC to multiple channels 
(MCPWC). That is, the estimation of PWC for all possible 
pairs that can be formed from a given set of time-series. 
We compare the execution time of a proposed sliding 
window protocol (SWP) for MCPWC to real-time 
constraints (RTC). These tests were performed on two 
platforms, Intel Xeon cluster (IXC) and IBM Cell 
Broadband Engine (CBE). MCPWC is characterized by a 
high degree of parallelism, and implementation of the 
kernel without careful analysis can lead to redundant 
computation. To parallelize MCPWC, the job division and 
load balancing is achieved by partitioning and streaming 
sampled data to multiple computing elements. In the CBE 
the partitioned data is streamed to compute-intensive cores 
called the Synergistic Processing Element (SPE) and in the 
IXC it is streamed to an available processing core. The 
factors that impact the performance of the SWP are: (1) 
choice of MCPWC implementation, (2) organization of 
data in the main memory, (3) data access strategy, (4) 
efficiency of job division and load balancing, and (5) 
hardware specifications of the computing platform. All of 
these factors were considered while designing the SWP 
kernel.  

II.  METHODS 

A. Multi-Channel Pairwise Correlation 

The data collected in fMRI and scalp EEG and icEEG 
are a set of discrete samples and hence PPMCC can be 
computed using eqn (1): 
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where,  
n : number of elements in set X and Y 

xi : i
th
 element in the set X 

yi : i
th
 element in the set Y 

 
MCPWC can be represented by eqn (2):  
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where, r(i,j) is the PWC for time-series i and j, and 0 < i < j 

≤ m; m being the number of channels 

B. Sliding Window Protocol for MCPWC 

The SWP computes MCPWC of samples collected 
during a predefined analysis window. The number of 
samples (w) per channel within the analysis window is 
defined by the window length (TW) measured in seconds 
and the sampling frequency FS. The number of samples, w, 
is:  

w = TW * FS * 1000 (3) 

On completion of the MCPWC computation, the 
analysis window is advanced by a number of samples 
which is specified by the slide factor (SF). The slide 
factor is a function of FS and the desired output resolution 
(1/TR). Where TR is the time interval, measured in 
seconds, after which the MCPWC output is refreshed. SF 
can be calculated by (4): 

SF = TR * FS * 1000    (4) 

The first MCPWC output is available after the initial 
window has been built. Following that, the output is 
updated every SF samples. This process of advancing the 
window and computing MCPWC continues until the user 
stops the process or the data stream is exhausted.  

It is assumed that w ≥ SF and that at least one sample is 
collected before the output is updated (SF ≥ 1). The 
optimization efforts for real-time implementation were 
directed towards not overwhelming system resources such 
as data collection buffers. To meet the real-time constraint, 
SWP outputs have to be computed before the next data 
window is available. Thus, TR becomes the RTC for the 
algorithm.  

C. Optimization Methods for the Intel Architecture 

As indicated in the Introduction, load balancing is 
achieved by dividing the problem into sub-problems and 
distributing these sub-problems between the processing 
cores. For the SWP implementation on the Intel 
architecture, this can be achieved efficiently by dividing 
the problems along the time domain (subscript k in (2)) 
rather than along the channel domain (subscript i in (2)). 
By doing so, the high penalty bearing repetitive accesses 
to data elements can be avoided. This concept is illustrated 
in Fig. 1.  

We note the time required to complete the computation 
and update the output is independent of w when FS is 
constant. This is because in the implementation of SWP,  

 

Figure 1.  An illustration of PWC load balancing. The samples which 

have been advanced are split into sub-problems along the time axis and 

each sub-problem is assigned to a processing core. For example, the first 

sub-problem is assigned to Core 1 and the Nth sub-problem is assigned to 

Core N. 

the calculation of the following three values S1 = ∑��, S2 

= ∑��
� and S3 = ∑����  are performed in blocks of length 

SF. These blocks are combined to form the initial analysis 
window and compute the initial MCPWC estimate. SWP 
avoids redundant computations by using the values of S1, 
S2, and S3 computed for the previous window and 
updating them with the corresponding values for the new 
block of samples collected when the window is advanced, 
after subtracting the values of S1, S2, and S3 for the first 
block of samples of the previous window. That is, the 
newly computed values of S1, S2, and S3 are used to 
update the MCPWC estimate. Therefore, importantly, 
once the initial window has been processed, the process to 
update the MCPCW output requires only the new samples 
collected when the window is advanced and not the 
samples for the entire analysis window.  

D. Optimization Methods for the CBE 

In case of the CBE implementation of SWP, the data is 
divided along the channel domain (subscript i in (2)). For 
example, if the number of distinct time-series is 66 and 
six SPEs are available, then 11 time-series are assigned to 
each SPE. However, in order to estimate all possible 
pairs, inter-SPE communication is required. We have 
previously reported an efficient communication scheme to 
do this using the “Ring Algorithm” along with a system-
specific optimized computation scheme [5] [6]. This 
communication scheme is very efficient. It contributes to 
less than 1% of the time profile of the algorithm. The 
computations of S1, S2 and S3 are performed as described 
in Section II C. 

E. Evaluation Systems 

The experimental setup consisted of the following: 

a. Intel Xeon cluster system with a dual quad core 
Intel Xeon X5365 processor cluster; each core 
consisted of 32 KB L1 instruction cache, 32 KB 
L1 data cache, and an 8 MB shared L2 cache. The 
compiler set up consisted of GCC 4.1.2 with O3, 
Loop Unrolling, and Fast Math optimizations. 

b. Sony Playstation3
TM

 with CBE consisting of six 
compute-intensive cores (SPEs), 256 KB Local 
Store on each SPE, on-chip 4-way Bidirectional 
Interconnect Bus and one control-intensive core 
(PowerPC Processing Element, PPE) 
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F. Experimental Validation Protocol 

We evaluated the SWP kernel with simulated time-
series for different parameter values: (1) electrode grids of 
varying sizes ranging from current standards such as 8 x 8 
to 15 x 15, 30 x 30, and 40 x 40, (2) window duration, TW, 
was selected to be 0.5, 1, and 2 seconds, (3) sampling 
frequency, FS was selected to be 0.25, 0.5, 1, 2, 5, and 10 
kHz, (4) the output resolution, TR, was selected to be 2, 1, 
0.5, 0.1, and 0.05 seconds. The values of w and SF tested 
are shown in Table 1 and Table 2, respectively. The SWP 
implementation was evaluated all the grid sizes and for 
each combination of w and SF other than cases where SF > 
w. Additional tests were performed for fMRI data sets of 
dimensions up to 64x64x32. The data samples considered 
for evaluation were simulated floating point values. 

III. RESULTS 

The results of our tests are presented in Fig. 2 in terms 
of the percentage of the real-time constraint (PRTC) used 
for the SWP computation. PRTC is calculated using (5):  

PRTC = (Execution Time / RTC) * 100 (5) 

Table 1. Values of w for varying values of TW  and FS 

w 
TW (in seconds) 

0.5 1 2 

FS 

(KHz) 

0.25 125 250 500 

0.5 250 500 1000 

1 500 1000 2000 

2 1000 2000 4000 

5 2500 5000 1000 

10 5000 10000 20000 

Table 2. Values of SF for varying values of TR and FS 

SF 
TR (in seconds) 

2 1 0.5 0.1 0.05 

FS 

(KHz) 

0.25 500 250 125 25 12.5 

0.5 1000 500 250 50 25 

1 2000 1000 500 100 50 

2 4000 2000 1000 200 100 

5 10000 5000 2500 500 250 

10 20000 10000 5000 1000 500 

A. Results for the IBM Cell Broadband Engine 

Figs. 2(a), 2(b), and 2(c) display computation time as 
PRTC for the CBE for different numbers of channels, w, 
FS and TR. The time taken by the implementation scheme 
increases with an increase in FS. This is expected because 
SF and thus the computation required for S1, S2 and S3 

increases with the increase in FS. As expected, the 
implementation is independent of w. The computation is 
completed within a fraction of the RTC (< 20 %). Real-
time evaluation of the SWP was possible for fMRI data 
sets of dimensions up to 64x64x32 for FS = 1, 0.5, and 
0.33 Hz and TR = 1, 2, or 3 seconds.  

B. Results for the Intel Xeon Cluster 

The results obtained for the IXC are displayed in Figs. 
2(d), 2(e), and 2(f).  

The PRTC is expected to be consistent over varying 
window lengths. This is because the slide factor, SF, 
governs the amount of computation and communication 
the application performs thereby affecting kernel 
performance. This is illustrated in Figs. 2 (d), 2 (e), and 2 
(f).  

For a given FS, as output resolution increases (that is 
as TR decreases), the slide factor SF decreases. We notice 
that even with decreasing SF, PRTC generally increases. 
This is because the performance gains achieved by 
parallelization decrease with decrease in SF and thereby 
reduce the effective performance gain achieved.  

For moderate grid sizes such as 8 x 8 and 15 x 15, the 
application meets the RTC for all combinations of FS and 
TR. With the increase in grid size to 30 x 30, the 
application performs within the RTC for lower values of 
FS. As FS increases to very high values such as 5 kHz and 
10 kHz, the RTC is satisfied up to moderate output 
resolution and is not met for very high output resolutions 
such as TR = 0.05 seconds. The execution of SWP for very 
large grid sizes such as 40 x 40 is within the RTC for low 
FS and low output resolutions. At higher values of FS or 
high output resolutions, the application is not able to meet 
the RTC with IXC. 

IV. DISCUSSION 

 The PWC and MCPWC contain a high degree of 
parallelism that can be meaningfully exploited to achieve 
real-time estimation of these measures. We have 
performed a large number of tests over a range of 
acquisition parameters which justify the use of SWP to 
estimate MCPWC in real-time using IXC and CBE 
architectures. We have highlighted instances when SWP 
could and could not meet the RTC. In most instances the 
kernel execution time is within the RTC. In these 
instances the processor is not required during the 
remainder of the RTC, that is, till the time to initiate the 
next set of computations. Thus, for (100-
PRTC)*RTC/100 seconds the processor can be used for 
tasks such as data acquisition, signal pre-processing, 
computation of graph theoretical measures from the 
MCPWC estimates, and visualization of the output. We 
intend to optimize the algorithm further for MRI and 
rtfMRI with larger dimensions. The kernel’s memory 
handling and communication strategies can be fine-tuned 
to further improve the performance.  
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Figure 2.  Performance of MCPWC kernel in terms of the percentage of the real-time constraint (PRTC). (a), (b), (c) Performance of MCPWC kernel on 

IBM Cell Broadband Engine. (d), (e), (f) Performance of MCPWC kernel on Intel Xeon Cluster.  (a), (d) Window duration, TW = 2 sec. (b), (e) TW  = 1 sec. 

(c), (f) Tw = 0.5 sec. Each plot is grouped into six sub-plots. These sub-plots illustrate performance for FS = 0.25, 0.5, 1, 2, 5, and 10 kHz (from left to right). 

Each sub-plot contains up to 5 bars representing execution times for TR = 2, 1, 0.5, 0.1, 0.05 sec (from left to right). TR = 2 sec was not considered in (b), (c), 

(e), and (f), because, for these values of TW, FS and TR, SF > w (see Tables 1 and 2). Similarly, SF > w when TR = 1 sec in (c) and (f). To calculate PRTC for 

each particular TR, its corresponding RTC was considered (see Section II A). The real-time constraint was satisfied for all instances (PRTC < 100) for the 

CBE and in many instances for the IXC. 

V.     CONCLUSION 

We have demonstrated the ability of a parallel sliding 
window protocol algorithm to meet the real-time 
requirements for estimating the correlation of multichannel 
fMRI and scalp and intracranial EEG signals. The algorithm 
was implemented on two platforms, the Intel Xeon cluster 
and the IBM Cell Broadband Engine. While superior 
performance was achieved on the IBM Cell Broadband 
Engine, we demonstrate that it is possible to estimate 
correlation in real-time, for selected acquisition parameters, 
on the more familiar and widely-used Intel Xeon cluster.  
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