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Abstract— Correlation based measures have widely been
used to characterize brain connectivity. In this paper, a new
approach based on singular spectrum analysis is proposed
to characterize brain connectivity. It is obtained by deriving
the common basis vector of two or more trajectory matrices
associated with functional brain responses. This approach has
the advantage illustrating the existence of joint variations of the
functional brain responses and to characterize the correlation
structure. The performance of the method are illustrated on
both simulated autoregressive data and real fMRI data.

Index Terms— Brain networks, functional connectivity, fMRI,
singular spectrum analysis, correlation.

I. INTRODUCTION

With the widespread acceptance of the network

description onto brain processing functions, identification

and quantification of interactions between brain structures

that support the processing of specific brain functions

(perceptual, cognitive or motor functions) is a fundamental

issue in neuroscience. For example, information about

the functioning or dysfunctioning of the brain can be

inferred from the network structure. The current theories

of schizophrenia emphasize that the core aspects of the

pathophysiology is due to the disconnection hypothesis [1]

rather than deficits in specific brain areas. The availability of

neuroimaging techniques, such as electroencephalography

(EEG), magnetoencephalography (MEG), functional

near infrared imaging (fNIR) and functional magnetic

resonance imaging (fMRI), offers ways to address questions

of functional connectivity that is fundamental for the

description of these brain networks. This is done through

the statistical analysis of the time series they produce.

Functional connectivity is defined in [2] as temporal

correlation between spatially remote neurophysiological

events, is one method to characterize such interactions.

Correlation measures the simultaneous coupling between

two time series. Various other correlation methods have

been proposed in brain imaging data analysis to extract

information of interaction from data sets; among them

partial correlation [4] and coherence [5].

The idea behind functional connectivity is to characterize

the resemblance between two or more brain regions on
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the basis of similarities in their functional time series.

For example, if two or more brain regions show similar

fMRI density spectrum, then we could deduce that they

are functionally connected even though there may be no

direct anatomical connection between these regions. Other

measure of resemblance that are not correlation based could

be used to characterize functional connectivity.

The purpose of this paper is to introduce a novel method to

study or characterize functional connectivity between two

or more brain regions. The method is based on singular

spectrum analysis that was introduced in [6] to study the

structure of time series. The aim of singular spectrum

analysis is to decompose an observed time series of interest

into a number of additive time series components that can be

interpreted as trend components (smooth and slowly varying

parts of the times series), various oscillatory components

and unstructured noise. It is a model-free technique and the

principle consists in unfolding an observed time series into

the columns of a Hankel matrix known as the trajectory

matrix [7]. A characteristic time series which can be used

for characterizing the structure of the observed time series

or for forecasting can be obtained from the SVD of a

trajectory matrix. Singular spectrum analysis is used in this

paper to extract similarities between two or more functional

brain responses to characterize functional brain connectivity.

This is done by deriving the common basis vector time

of the two or more trajectory matrices obtained from the

functional brain responses of interest.

Basic singular spectrum analysis of a time series is

described in the following section. The method used to

extract similarities to characterize the connectivity between

two or more time series is presented in Section 3. The

performance results of the proposed measure on both

simulated autoregressive and real fMRI data are presented

in Section 4. Concluding remarks are given in Section 5.

II. SINGULAR SPECTRUM ANALYSIS

Singular spectrum analysis consists of two complementary

tasks: decomposition and reconstruction [7]. Each task is

composed of two steps.

Let yi, i = 1, ..., N be an observed fMRI or fNIR time

series, k be an integer value and define l = N − k + 1. At

the first step, the corrected mean observed time series ỹi,
i = 1, ..., N is mapped into a sequence of multidimensional

lagged vectors that form the columns of of a k × l Hankel
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matrix

Y = [ỹ1, ỹ2, ..., ỹl]

=











ỹ1 ỹ2 . . . ỹl
ỹ2 ỹ3 . . . ỹl+1

...
...

...
...

ỹk ỹk+1 . . . ỹN











. (1)

The matrix Y is called the trajectory matrix and the number

k of rows of Y is referred to as the embedded dimension or

window length. Its choice is restricted to 2 ≤ k ≤ [N+1
2 ]1

and is the sole parameter of this step.

The second step consists in generating the singular value

decomposition of the trajectory matrix. This allows the

trajectory matrix to be written as the sum of rank one bi-

orthogonal matrices. Let S = YY⊤, denote λ1 ≥ ... ≥ λk

the eigenvalues and u1, ..., uk the corresponding eigenvectors

of S. Using vi = Y⊤ui/
√
λi, the following trajectory matrix

decomposition is generated

Y = Y1 + Y2 + ...+ Yd, (2)

where Yi =
√
λiuiv

⊤

i have rank one and

d = max{i, such that λi > 0}. The elements (
√
λi, ui, vi)

are called the eigentriples of (2). These two steps constitutes

the decomposition task.

The reconstruction task starts with the grouping step. In this

step, the indices {1, ..., d} are partitioned into m groups and

the matrices are summed within each group creating the

decomposition

Y = Ỹ1 + Ỹ2 + ...+ Ỹm. (3)

This step results in a representation of the trajectory matrix

as a sum of several resultant matrices.

The last step of the reconstruction task maps each resultant

matrix into a time series of length N, which is an additive

component of the observed time series. A time series of

length N is generated from a matrix Ỹ by diagonal averaging

ỹi =























1
s

∑s

i=1 ỹi,s−i+1 1 ≤ s ≤ k

1
k

∑k

i=1 ỹi,s−i+1 k ≤ l ≤ n

1
N−s+1

∑N−s+1
i=1 ỹi+s−n,n−i+1 n ≤ s ≤ N

(4)

Therefore, the initial time series y = yi, i = 1, ..., N is

decomposed into the sum of m component time series

y =

m
∑

i=1

ỹi. (5)

The separability aspect is an important part of the singular

spectrum analysis method. The periodic component in the

data will be reflected as a pair of almost equal eigenvalues

[7].

1[.] denote the integer part.

III. USING SINGULAR SPECTRUM ANALYSIS FOR BRAIN

CONNECTIVITY

A standard approach for whole brain analysis is to derive

a single time series for each region-of-interest (ROI) either

by averaging or by extracting a principal component; alterna-

tively repeated pairwise analysis can be performed on pairs

of voxels. Assume yi and zi, i = 1, ..., N correspond to the

measurement of two fMRI time series representing two re-

gions between which the connectivity is to be characterized.

Rather than using a correlation based measure to characterize

the connectivity, the proposed method looks at extracting

variations the functional brain responses of interest have

in common. The rational of the method is that if there is

connectivity between two brain regions of interest, then some

time series components that characterize the same variations

may be present in each functional brain response but with

different importance.

One way to extract these common time series components

is to use a common basis to decompose both trajectory

matrices Y and Z obtained from yi and zi, i = 1, ..., N .

The matrix of normalized eigenvectors U = [u1, ..., ud] of

the column space of Y and Z corresponds to this basis if

it simultaneously diagonalize or makes them as diagonal as

possible in a sense to be defined [8]

U⊤SiU = Λi i = 1, 2 (6)

where S1 = YY⊤, S2 = ZZ⊤ and Λi=1,2 are diagonal.

The vector ui gives the coefficients of the ith common basis

vector and the diagonal elements of Λi=1,2 characterize the

contribution proportion of the ith time series to the observed

time series.

However, since the time series yi and zi, i = 1, ..., N share

only some information it is only possible to find two matrices

of normalized eigenvectors U1 and U2 with common r <
d eigenvectors [u1, ..., ur], the rest describes the difference

in information. The matrices U1 and U2 are of the forms

[u1, ..., ur, u1(r+1), ..., u1d] and [u1, ..., ur, u2(r+1), ..., u2d]

U⊤

i SiUi = Λi i = 1, 2. (7)

As described in [8], algorithms for simultaneous diagonaliza-

tion can be used to estimate [u1, ..., ud]. The common signal

for yi and zi, i = 1, ..., N that can be used to characterize

brain connectivity is then obtained by reconstructing the

trajectory matrices using (2),

Yc = Y1 + Y2 + ...+ Yr,

Zc = Z1 + Z2 + ...+ Zr,

where Yi =
√
λiuiv

⊤

i with vi = Y⊤ui/
√
λi and Zi =√

λiuiw
⊤

i with wi = Z⊤ui/
√
λi. The common signals are

obtained using (4) and (5). A normalized measure of the

energy
∑

i y
2
ci
/
∑

i y
2
i of this time series can then be used

as a measure of connectivity. The number r of common

eigenvectors in S1 and S2 needed to characterize the shared

information can be selected using a model selection criterion

[9] as follows
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Fig. 1. Original time series x bottom and its singular spectrum top.
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Fig. 2. Original time series y bottom and its singular spectrum top.

ICPPCA(r)

=

2
∑

l=1

ln





(

r
∏

i=1

λli

)

.

(

1

d− r

d
∑

i=r+1

λli

)(d−r)




+
r

N
ln(N) (8)

Other forms of model selection criteria could be used such

as AICc [13], [14] or KICc [15]

IV. SIMULATION EXAMPLE

In order to test and validate the proposed method in

identifying brain connectivity, two autoregressive processes

consisting of 256 samples with the second being driven by

the first according to the following model
{

xk = −0.84xk−1 + uk

yk = −0.5xk−1 +−0.84yk−1 + vk
(9)

where vi and ui are independent and (i.i.d) N(0, 0.28) were

generated.

The top figure of figure 1 display the singular spectrum

obtained by the method described in Section 2 with the

number of retained eigenvalues estimated with (8). The

bottom figure represents the original time series x. In a

similar way top figure of figure 2 display the singular

spectrum obtained by the method described in Section 2

with the number of retained eigenvalues estimated with (8).

The bottom figure represents the original time series y. The

connectivity between the two time series is extracted by

using a common basis for the two trajectory matrices X and

Y as described in Section 3. If such basis exists, then the

time series x and y share some information and this basis

can be used to obtain singular spectrum of both x and y
as illustrated in figure 3. We can observe from this figure

that both singular spectrums approximate the associated time
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Fig. 3. singular spectrum of x, top and y bottom.
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Fig. 4. Real fMRI data - functionally connected regions: region response
(top), and shared structure (bottom) as revealed by the proposed method.

series. In case such basis doesn’t exist the reconstruction

with this basis of x or y will not be possible and therefore

the singular spectrum will not approximate the original time

series x and y. By considering single representative time-

series for ROIs under investigation, the proposed method can

perform the whole brain analysis fairly fast with modern day

computers. It took an average time of 1.2 s to compute the

shared structure with the proposed method, averaged over

100 realizations of model (9), with a 3 GHz Intel Core-2

Quad CPU and RAM 3.25 GB. For quantifying the similarity,

100 realizations based on model (9) for both functionally

connected (first driving the second series) and functionally

unconnected (zero influence from the first on the second

series with other parameters remaining the same) regions

were simulated and an average correlation measure is derived

that is reported in Table-1 along with the real fMRI data (next

section). The measure clearly indicates that the proposed

method is asserting functional connectivity better than simply

based on correlation of the original ROIs response.
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Fig. 5. Real fMRI data - functionally unconnected regions: region response
(top), and shared structure (bottom) as revealed by the proposed method.

V. FMRI APPLICATION

Discriminating Visual Targets - Event-related Design:

After obtaining informed consent approved by the ethics

committee, the experiment was performed on six subjects

with no psychiatric or neurological disorders. In this fMRI

study, a spatial cue was followed by a sequence of bilateral

visual stimulus arrays, and the subject had to discriminate a

target item from surrounding distractor items at the attended

location. fMRI images were acquired using a General Elec-

tric 1.5T Signal LX neuro-optimized scanner. After structural

scanning, functional images were acquired in nine runs

lasting 8.5 min each (TR: 2 sec, TE: 40 msec, flip angle:

90◦, matrix: 64 x 64 voxels, 2.8125 x 2.8125 x 3 mm, 14

slices oriented vertical to the calcarine fissure). Subjects were

asked to covertly shift their attention to the side (right, left

or neutral) indicated by a symbolic cue. Then, a sequence

of 10 bilateral stimuli (’item’) appeared in the upper visual

field. Stimuli on both sides consisted of 3 x 3 arrays of

crosses superimposed on a background checkerboard that

was locally and globally smoothed. The subjects had to

discriminate whether a target T in the middle of the attended

stimulus was upright or inverted (50/50 %) and to press

one of the two buttons. Details of this experiment can be

found in [11]. Image processing and statistical analysis were

carried out using SPM8 [12] and Matlab. For analyzing the

condition: symbolic cue followed by discriminating the target

item ’T’ under low contrast, the 286 acquisitions had the

visual stimulus activating the part of the brain responsible for

interpreting cues and discriminating specific target behavior,

with the corresponding HRF estimated in [3].

We take the principal component as a representative time-

series for each ROI (22-voxels) in a pair of activated regions,

Correlation Real data Synthetic data
SS / OBR* SS / OBR

Connected ROIs 0.9227 / 0.9084 0.7121 / 0.5518

Unconnected ROIs -0.49 / -0.3448 -0.0194 / -0.0155

TABLE I

FUNCTIONAL CONNECTIVITY (* : SHARED STRUCTURE / ORIGINAL

BRAIN RESPONSE)

the hidden shared structure has been easily extracted by the

proposed method revealing the strong functional connectivity

among them as shown in Fig. 4. Similarly, a pair of activated

and non-activated regions was selected and their principal

components are tried for common structure in them. Fig. 5

shows clearly the absence of any common structure revealing

that the brain regions are functionally not connected. Same

observations can easily be made from Table-1.

VI. CONCLUSION

In this paper a new approach based on singular spectrum

analysis has been proposed to characterize brain connectivity.

The approach has the advantage of allowing to investigate

the existence of common structure among several brain

responses. The common structure is explained by the number

of retained eigenvalues and the common basis vector shared

by the trajectory matrices associated to the brain responses.

The performance of the method were illustrated on both

simulated autoregressive data and real fMRI data.
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