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and down-sampled to 2 kHz for analysis of the LFP. High-

frequency AP data were digitally filtered (eight pole, high-

pass 250Hz, low-pass 7.5kHz) and sampled at 30 kHz.  

Individual spikes were detected offline using t-distribution 

E-M sorting [15]. Only units that were well isolated from the 

noise cluster in 3-D PCA space were retained for further 

analysis (12 in PBr, and 24 in AI).  

LFPs were recorded on 96 channels for 144 trials per class 

in AI (1008 total trials), and on 95 channels for 112 trials per 

class in PBr (784 total trials) over multiple weeks. 

Multitapered spectrograms and peri-stimulus time 

histograms (PSTHs) were generated using an open source 

neural analysis package (www.chronux.org) [16]. Single-

trial PSTHs and LFP spectrograms were generated 

separately for four durations after the beginning of each 

vocalization (200, 400, 800, and 1600 msec). PSTHs were 

calculated using Gaussian kernels of five widths (5, 10, 25, 

50, and 100 msec). Spectrograms were calculated using 

multitapered analysis with a time-bandwith product of 5, 9 

leading tapers, 200 msec windows, 10 msec step sizes, and 

using 1024-point fast Fourier transforms.  

D. Statistical Classification 

We extended the method of Kellis et al. [17] to 

simultaneously incorporate features representing dynamics 

in time, space, and frequency for both AP data and LFP data. 

We use the term class to refer to one type of species-

specific-specific vocalization (e.g., “grunt”), and the term 

trial to refer to one instance of a vocalization being played 

for the monkey.   

To select training features for LFP responses, two-

dimensional spectrograms were calculated for a subset of 

trials from each class and each recording channel.  These 

multidimensional data were unwrapped to produce a two-

dimensional matrix in which each row contained all the time 

and frequency features from all channels for a single trial. 

The feature matrix was z-scored, orthogonalized using 

principal component analysis (PCA), and projected into the 

principal component space using a sufficient number of 

leading principal components to retain 95% of the variance 

in the data. A different subset of trials was selected for 

testing the classifier, and spectrograms were calculated for 

each class and each recording channel.  These data were 

unwrapped into a two-dimensional matrix, z-scored, and 

projected into the same principal component space 

calculated for training features.  

To produce training and testing sets from AP data, we 

selected consecutive days for which at least four common 

channels had units with similar firing responses (6 pairs of 

days for AI, 4 units for each day; 2 pairs of days for PBr, 6 

units for each day). For each pair of consecutive days, the 

data from the first day were used for training, and data from 

the second day were used as testing.  For both training and 

testing, AP data were collected into a large two-dimensional 

matrix where each row represented all firing rate data from 

each unit for a given trial.  Then, the data were z-scored, 

orthogonalized, and projected into the principal component 

space using the same process described above for LFP data. 

The classifier was evaluated for all pair-wise 

combinations of vocalizations using linear discriminant 

analysis. Pairwise classifications were examined in order to 

determine probability distributions to be used in information 

theoretic analyses.  

E.   Information Theoretic Analyses 

To examine cortical information transfer we examined 

CMI between a stimulus and a response in one cortical area 

given that there was a response in the other cortical area. Let 

Rx and Ry be two random variables representing neural 

response classes in two different cortical areas, we 

calculated CMI as follows: 

 

 
Where probability distributions p(y), p(s,y), p(x,y), and 

p(s,x,y) were taken from confusion matrices of pair-wise 

classification frequencies for all AP and LFP responses.  

Equation (1) was evaluated for Rx being responses in AI and 

Ry being responses in PBr to calculate CMI for stimulus and 

response in AI given that the response in PBr is known (

I(S;R
AI
|R

PBr
)). CMI for stimulus and response in PBr 

given a known response in AI ( ) was 

calculated in the same way. Mean information values across 

data durations are reported as mean ± standard deviation. 

 III. RESULTS 

A.  Transfer Information Varies for Different Time Scales of 

Auditory Processing 

To examine cortical information transfer between AI and 

PBr for the seven species-specific vocalization stimuli, we 

calculated the mutual inforamtion between an auditory 

stimulus and the neural response in one cortical area given 

the response in the other cortical area was known; the CMI. 

For AP responses, when CMI is averaged over all kernel-

widths, information in AI given PBr was greater than the 

information in PBr given A1 for all 4 data durations (

I(S;R
AI
|R

PBr
) -  = 1.68 ± 0.51 bits) (Figure 

2a). For LFP responses, the information in A1 given PBr 

was also greater than the information in PBr given A1 for 

the 400, 800 and 1600 millisecond data durations (

 -  = 0.49 ± 0.40  bits). 

However, for the 200 millisecond data duration for LFP 

responses information in PBr given A1 was greater than the 

information in A1 given PBr (  - 

 = 3.33 bits) (Figure 2b). The highest CMI 

observed across all LFP responses was for the 200-

millisecond data duration for responses in PBr, given 

responses in AI (6.64 bits) (figure 2b). 

B.  Transfer Information for Short Time-Scale AP Responses 

is Dependent on PSTH Temporal Resolution 

While the bias of information transfer reverses for 200-

millisecond versus 400, 800 and 1600 millisecond LFP 

responses, this change in direction is not evident for the AP 

responses averaged over the different kernel-widths. 

However, this change in bias is apparent for the 25 and 50 

millisecond kernel widths (red and blue lines are higher for 

the 200 millisecond data duration in Figure 3b, whereas all 
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the 200 millisecond data duration doesn’t contain the full 

duration of any of the seven vocalizations. These results 

accord with the theory that cortico-cortical feedback is 

evident in offset, or at least later, neural responses.  

The output of our classifier provided more information 

about the first 200 milliseconds of responses in PBr given 

that the first 200 milliseconds of responses in AI were 

known. Further examination of the CMI from AP responses 

shows that CMI from the 5, 10 and 100 millisecond kernel-

widths is lower in PBr given AI than that in AI given PBr. 

The lack of information in PBr given AI for the 5 and 10 

millisecond kernel-widths points to a particular window of 

temporal integration in PBr. A recent study examining 

temporal integration in macaque auditory cortex shows that 

neurons from the belt region of auditory cortex (between AI 

and parabelt in the processing stream) have difficulty 

synchronizing to stimulus modulations above and below 5 Hz 

[18]. PBr may have a similar window of temporal integration, 

as the high information for the 25 and 50 millisecond kernel-

widths corresponds to a temporal integration window of 

between 20 and 40 Hz. The 100 millisecond kernel-width is 

wide enough to be interpreted as an average firing rate for the 

200 millisecond data duration. Therefore we can conclude 

that temporal fluctuations in the neural responses, in addition 

to average firing rate, provide information about a stimulus in 

the first 200 milliseconds in PBr. Together these results 

suggest that coding in PBr relies on information from overall 

firing rate and precise temporal fluctuations of responses in 

AI, though neurons in PBr might not be able to synchronize 

to rapid temporal modulations, like those in AI.   

V. CONCLUSION 

We have presented a study of neural responses in two 

cortical areas along the ventral processing stream in the 

context of information transfer along the cortical processing 

stream. We have shown that responses in AI contain more 

information about species-specific vocalizations when late 

responses in PBr are known. In contrast, early responses in 

PBr contain more information about stimuli when responses 

in AI are known. These results elucidate the time scale and 

directionality of processing along the ventral auditory 

processing stream.  
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