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Abstract— Automatic seizure detection from the electroen-
cephalogram (EEG) plays an important role in an on-demand
closed-loop therapeutic system. A new feature, called IMF-VoE,
is proposed to predict the occurrence of seizures. The IMF-VoE
feature combines three intrinsic mode functions (IMFs) from
the empirical mode decomposition of a EEG signal and the
variance of the range between the upper and lower envelopes
(VoE) of the signal. These multiple cues encode the intrinsic
characteristics of seizure states, thus are able to distinguish
them from the background. The feature is tested on 80.4 hours
of EEG data with 10 seizures of 4 patients. The sensitivity of
100% is obtained with a low false detection rate of 0.16 per
hour. Average time delays are 19.4s, 13.2s, and 10.7s at the false
detection rates of 0.16 per hour, 0.27 per hour, and 0.41 per
hour respectively, when different thresholds are used. The result
is competitive among recent studies. In addition, since the IMF-
VoE is compact, the detection system is of high computational
efficiency and able to run in real time.

I. INTRODUCTION

Epilepsy is a neurological disorder which affects about
50 million people worldwide. Epilepsy commonly leads
to unexpected seizures with involuntary muscle contrac-
tion and loss of consciousness. Studies have shown that
seizure patterns in EEG may present before major behavioral
manifestations[1]. Thus it is valuable to automatically predict
seizures from scalp EEG and trigger the prevention system
before behaviors for epileptic patients.

During the past years, lots of efforts have been made
in automatic seizure detection from scalp EEG signals [2].
A seizure detection method usually consists of a feature
and a classifier. The proposed feature extraction methods
include time and frequency analysis, entropy-based [3] and
energy-based [4] approaches, component analysis [5], and
empirical mode decomposition (EMD) [6]. Support Vector
Machine (SVM) [7] and artificial neural networks (ANN)
[5] are widely used for learning and classifiers. However,
most existing methods can not well satisfy the requirements
of practical uses. This is because: 1) some methods have long
time delay in order to obtain a low false detection rate, which
is not suitable for online application; 2) the features used in
some methods are person-specific and lack of generalization
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to a large amount of patients. Consequently, it is still a
problem to find a general feature which is able to reach high
performance and short time delay.

In this study, we propose a new approach to detect seizure
onsets from scalp EEG. To reflect various information of
seizure state in EEG signals, multiple cues are extracted
to constitute the feature IMF-VoE, including three intrinsic
mode functions (IMFs) of the EMD and the variance of
the range between the upper and lower envelopes. The
experiments are tested on 80.4 hours of EEG data. The high
sensitivity of 100% is achieved at a low false detection rates
(FDR) of 0.16 per hour. The average time delays can be
controlled at about 10 seconds.

II. OUR METHOD
Closely spaced spikes and slow waves are observable

abnormal signals in seizure scalp EEG compared with the
background signals [8]. This leads to relatively large variance
of the range between upper and lower envelopes of signals,
given a time window (see Fig. 2). Thus, we propose to use
the variance of envelope difference (VoE) as one feature to
characterize the seizure state. Besides, the EMD method can
reduce given data into a collection of IMFs, which are simple
oscillatory modes and have variable amplitude and frequency
along the time axis. Due to the diversity of seizure EEG
signals from different persons, we combine the VoE and
a few IMFs to construct a powerful IMF-VoE feature for
complementary purpose. Based on the feature, the detection
stage can be performed by a simple threshold learned from
background signals. In a real-time detection system, a two-
threshold scheme is used to transform the seizure state to
normal state in order for the detector to predict the next
seizure. The framework of our method is shown in Fig. 1.

A. Feature Extraction
Raw EEG records are divided into segments by a sliding

window with the size of 1s and the stride of 0.2s for
subsequent processing.

1) Intrinsic Model Functions (IMFs): We compute the
IMFs by the classical EMD method, which has been proved
effective in seizure detection [9], [10]. The variance of the
N th IMF (VoIMF) in the tth segment is:

VoIMFN (t) =
1

n− 1

n∑
i=1

(xi − x)2, (1)

where xi is a data point in IMFN and n is the sample
number in the segment. As shown in Fig. 3, VoIMFs have
larger values at seizure states while keep small at non-seizure
points. In our method, the first three VoIMFs are used for
feature combination.
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Fig. 1. A flow chart of seizure detection system

Fig. 2. The envelope computation of seizure and non-seizure data. (a, b)
Raw EEG data. (c, d) Smoothed EEG data.

2) Variance of Envelope Difference (VoE): Most seizure
states cause the change of the range between the upper and
lower envelopes of signals. As shown in Fig. 2, we compute
the VoE by the following steps:

• Use a mean filter to remove densely located local
maxima/minima;

• Compute the envelopes of the filtered data:
– the upper envelope: find all the local maxima and

connect them to be the upper envelope Eu;
– the lower envelope: find all the local minima and

connect them to be the lower envelope El;
• Compute VoE in the tth segment:

VoE(t) =
1

n− 1

n∑
i=1

(Euti − Elti − (Eut − Elt))
2, (2)

where n is the number of the sampling points, Euti/Elti

is the value of the upper/lower envelope at point i,
and Eut − Elt is the mean difference between the
upper/lower envelopes in the tth segment.

Fig. 3 shows that larger values of VoE appear at seizure
states. Thus, we use it as another feature for seizure detec-
tion.

3) IMF-VoE Feature: From Fig. 3, it can be found that
only the VoIMF or VoE feature have some strength to identify
seizure states, while none of them is always powerful along
the whole duration of ictus. At the point that one feature

Fig. 3. The changes of single/combined features against seizure/non-seizure
states.

is ineffective, the other features may be helpful. In order to
benefit from both the VoIMF and VoE features, we combine
them to build a IMF-VoE feature.

First, for each VoIMF or VoE, its probability density
function is estimated from non-seizure signals. Suppose the
values of the feature are in the range of [a, b]. Using a
piece of training background signal of EEG, a histogram
with m bins and a bin width of h = (b − a)/m can be
computed. After normalization, Pi,k in the kth bin represents
the probability of feature i falling into a certain range in the
non-seizure state. If Pi,k is zero, it will be set to a small value
for the numerical purpose. In our experiments, we find that
m = 150 and h = 10 can sufficiently satisfy the requirement
of detection.

After Pi,k for VoE and each VoIMF is estimated, the IMF-
VoE feature in the tth segment is computed by

IMF−VoE(t) = log2

n∏
i=1

Pi,bi, (3)

where n represents the number of features and Pi,bi is the
value in bin bi of the histogram in which the value of feature
i falls. Fig. 3 shows the ability of the IMF-VoE feature. In
the seizure state, it keeps small and exhibits more stable than
the single features.

B. Seizure Detection

1) Probability of IMF-VoE: Since the dimension of the
IMF-VoE feature is one, it is straightforward to learn a
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Fig. 4. The k-factors of single/combined IMF-VoE features for all patients.

threshold from the EEG signal to construct a classifier for
detection. However, in practice, a fixed threshold can not
well distinguish seizure states from background for different
persons due to the diversity of signals from individuals. Thus
we estimate the probability density functions of IMF-VoE
for each patient with the training background data. Once the
probability of IMF-VoE (PoIV) is less than a threshold which
is general over individuals, a seizure onset was detected.

2) Detection system: In a real-time seizure detection
system, it is necessary to switch the decision of classifier
from the seizure state to the normal state so as to predict
the next seizure. Thus, we use two thresholds, THon and
THoff , and a boolean state variable Onset to address the
problem. When Onset is false and PoIV for current segment
is lower than the THon, a seizure is detected. The state of
the classifier will be turned back to non-seizure when PoIV
is higher than THoff during onset. The process of detection
is described in Fig. 1.

III. EXPERIMENTS

A. Materials and Settings

All EEG data used in the study are recorded during presur-
gical epilepsy monitoring by NicoletOne amplifier from the
Second Affiliated Hospital of Zhejiang University College
of Medicine. 32 channels of scalp EEG data are recorded
according to the International 10-20 System of Electrode
Placement. The sample rate is 256Hz. 50Hz notch and 1.6Hz-
70Hz band pass filters has been applied in the acquisition.
Only one channel recorded from within the epileptogenic
zone is selected with the advice of the epileptologist for
seizure detection.

B. Analysis of Features

To test the classification effects of VoIMFs, VoE and
the combined IMF-VoE feature, we employ k-factor as the
measure:

k−factor = |m1 −m2|√
(v1 + v2)/2

(4)

where m1 and m2 are the means of feature values of
seizure and non-seizure signals, v1 and v2 are the variances.
The k-factor indicates the distance between two clusters of
seizure and non-seizure signals classified based on given
feature. High k-factor value indicates good classification
performance [7]. The results are shown in Fig. 4. Diverse
classification performances of the VoIMFs and VoE are
observed for different patients. For example, the feature of
VoE shows good classification effect for patient1, 2 and 4.
While for patient 3, VoIMF3 has the best performance of
distinguishing seizure from background signals. Despite the
various classification capacity of VoIMF or VoE feature, the
performance of combined IMF-VoE feature keeps relatively
high. The overall k-factors also indicate that combined IMF-
VoE feature as a integration of the four single features, has
high and stable performance over patients.

C. Seizure Detection Performance

The seizure detection method is tested on 80.4 hours of
EEG data with 10 seizures of 4 patients. The performance
is evaluated by three commonly used measures of sensitivity
(proportion of seizures correctly detected), false detection
rate (FDR, false detection times per hour) and time delay
(TD, time latency between seizure onset detected and seizure
onset marked by epileptologists). Results for different thresh-
olds are shown in TABLE I.

The detection system obtains a sensitivity of 100% with
low FDR of 0.16 per hour. The time delay can be controlled
at about 10 seconds with an acceptable FDR of 0.41 per
hour. The selection of THon can adjust the tradeoff between
FDR and time delay. Given high sensitivity and low FDR, the
system may serve as offline seizure detector to mark seizures
in long-term EEG automatically instead of by epileptologists
manually which is a labor-intensive task [11]. On the other
hand, with short time delay the method is capable for
online detecting work with high performance. Our results
are competitive to former studies. Saab and Gotman reported
a detection method with sensitivity of 78%, FDR of 0.86/h
and TD 9.8s[12]. Meier’s study reported a online system with
sensitivity of 90%, FDR less than 0.5/h with TD less than
10s [7]. These methods need much more features to compute,
while in this study, only few features are used and high
performance is achieved with relatively lower computational
cost. Furthermore, only small piece of background EEG data
rather than large amount of seizure and non-seizure data are
used in the training stage.

D. Analysis of FDR

Time delay is an important criterion for online seizure
detection system. Short time delay unavoidably causes an
increase in FDR, so that the control of FDR is a critical
issue for performance improvement.

There are two kinds of false detections: interesting ones
and uninteresting ones [12]. Interesting false detections (IFD)
involve epileptic events such as spikes or rhythmic waves
while uninteresting false detections (UFD) are non-epileptic
events due to artifacts such as EMG or amplitude bursts. In
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TABLE I
RESULTS OF THREE THRESHOLDS

Patients Hours Seizures THon=0.0001,THoff=0.1 THon=0.0003,THoff=0.1 THon=0.0005,THoff=0.1
TD(s) FD FDR(/h) TD(s) FD FDR(/h) TD(s) FD FDR(/h)

P1 15.5 S1 18.59 0 0 5.31 0 0 4.92 0 0S2 22.58 21.41 20.23

P2 24 S1 25.48 3 0.13 12.98 9 0.38 5.56 13 0.54S2 4.06 4.06 4.06
S3 31.78 8.34 8.34

P3 24.9 S1 9.69 5 0.20 9.30 5 0.20 8.93 6 0.24S2 4.94 4.94 4.94

P4 16 S1 36.91 5 0.31 33.00 8 0.50 17.38 12 0.75S2 10.91 10.91 -12.53*
S3 29.47 21.66 21.66

Total 80.4 10 19.44 13 0.16 13.19 22 0.27 10.67 31 0.41
TD refers to time delay; FD refers to false detection; FDR refers to false detections per hour.

*Since some studies regard minus TD as FD, this value is discarded in calculation of average TD.

our study, the majority of false detections are uninteresting
ones. As we examine the false detections with synchronous
video records, it turns out that most false detections are made
because of rhythmic EMG artifacts while the patients are
chewing. The statistics of false detections for THon = 0.0005
are shown in TABLE II.

TABLE II
FALSE DETECTIONS

Patient IFD UFD UFD While Chewing
P1 0 0 0
P2 2 11 10
P3 1 5 5
P4 4 8 7

Total 7 24 22
IFD refers to interesting false detection;

UFD refers to uninteresting false detection.

Since up to 91% of the UFDs are caused by rhythmic
chewing while eating, detection and removal of EMG is
a necessary process to bring notable improvement to the
performance.

IV. CONCLUSION

In this paper, a new efficient method for epileptic seizure
automatic detection was proposed. The method showed high
performance on 4 patients. This method only needed small
amount of background EEG, and the computational com-
plexity was low enough for embedded systems.

In future work, larger data sets will be applied to verify
the performance of our method. In addition, with the EMG
artifacts detected and removed, the false detection rate of the
method could be decreased significantly. Algorithms such as
ICA [13] would be used for EMG removal to improve the
performance.
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