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Abstract— Epilepsy is a neurological condition with a preva-
lence of 1%, and 14-34% have medically refractory epilepsy
(MRE). Seizures in focal MRE are generated by a single
epileptogenic zone (or focus), thus there is potentially a cu-
rative procedure - surgical resection. This procedure depends
significantly on correct identification of the focus, which is
often uncertain in clinical practice. In this study, we analyzed
intracranial stereotaxic EEG (SEEG) data recorded in two hu-
man patients with drug-resistant epilepsy prior to undergoing
resection surgery. We view the sEEG data as samples from
the brain network and hypothesize that seizure foci can be
identified based on their network connectivity during seizure.
Specifically, we computed a time sequence of connectivity
matrices from EEG recordings that represent network structure
over time. For each patient, connectivity between electrodes
was measured using the coherence in a given frequency band.
Matrix structure was analyzed using singular value decompo-
sition and the leading singular vector was used to estimate
each electrode’s time dependent centrality (importance to the
network’s connectivity). Our preliminary study suggests that
seizure foci may be the most weakly connected regions in the
brain during the beginning of a seizure and the most strongly
connected regions towards the end of a seizure. Additionally,
in one of the patients analyzed, the network connectivity under
anesthesia highlights seizure foci. Ultimately, network centrality
computed from sEEG activity may be used to develop an
automated, reliable, and computationally efficient algorithm for
identifying seizure foci.

I. INTRODUCTION

Epilepsy affects 50 million people worldwide [1], and 30%
remain drug-resistant [2]. This has increased interest in both
chronic and responsive or closed-loop neurostimulation [3],
which is most effective when administered at or near the
seizure foci (brain region causing or facilitating seizures).
Precise foci localization from intracranial EEG (iIEEG) or
stereotaxic EEG (SEEG) recordings is therefore critical for
closed-loop intervention, but remains a challenging problem.
The identification of seizure foci is traditionally performed
by epileptologists who evaluate EEG recordings. From these
recordings, the onset of seizures and the nature of interictal
epileptiform spikes are inspected to determine the location
of the seizure focus or foci [9]. Depending on the location
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of identified foci, clinicians decide whether or not resecting
this area of the brain is likely to relieve the patient of his/her
seizure activity. The manual inspection of long extraoperative
recordings (days to weeks) by epileptologists is very time
consuming and there is a need for a computational means
of determining the location of seizure foci. Furthermore, it
has been shown that in many cases seizures spread through
the brain so rapidly that visual analysis cannot discern the
seizure focus in patients that had MRI identified focal lesions
[10].

Univariate efforts to algorithmically estimate seizure focus
location have examined the propagation of interictal spikes
and their morphology [4]. These methods do not examine the
relationship between channels and do not directly yield infor-
mation regarding the flow of activity between brain regions
[8]. The concept that a seizure is a network phenomenon that
involves the interaction of different regions has motivated
work on bivariate measures of the dependence of signals
recorded at different electrodes for focus localization. These
measures include linear and cross-correlations [14], direct
transfer functions based on Granger causality [8], phase
synchrony using the Hilbert transform [13], information
theory [12], Fourier analysis [6] and nonlinear interactions
[5]. These studies have examined the patterns of pair-wise
interactions between electrodes and typically identify the
seizure focus as the location that shows the greatest amount
of dependence with other electrode sites.

Recently, there has been research on analyzing brain
activity as a multivariate problem through the application of
graph theory and network analysis methods from sociology
and physics [7]. Here, the collection of pair-wise interac-
tions are organized in a graph and analyzed simultaneously.
Some studies use metrics derived from social networks
that commonly focus on summary statistics of the time
dependence of the brains connectivity during interictal and
seizure periods [11]. These studies have found that the onset
of seizure commonly corresponds to fluctuating values of
network connectivity. In relation to the seizure focus; there
have been some results that identify the electrode with the
greatest betweenness centrality to the focus [15].

Here, we further develop the network analysis of sEEG
data during both interictal and seizure states by examining
the eigenvectors of the network connectivity graph. But
rather than treat the eigenvectors only as an abstract rep-
resentation of the brain state, we exploit the property that
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they can be related to the immediate features of the network
through their interpretation as measures of the networks
eigenvector centrality. We propose to use this technique
as a means of identifying the seizure focus by examining
the connectivity of the entire network both during seizure
and interictal periods. This method has the advantage of
incorporating information from all electrodes rather than
pair-wise techniques and is computationally more efficient
than social network measures.

II. METHODS
A. Experimental Data

We use data collected from two patients (previously mon-
itored with stereotaxic depth electrodes as part of their pre-
surgical evaluation at the Cleveland Clinic Epilepsy Center)
in this study. Recordings were taken while the patients were
under anesthesia as well as while they were being monitored
in the epilepsy monitoring unit. The decisions regarding the
need for invasive monitoring and the placement of depth
electrodes were made independently of this project and solely
based on clinical necessity. Acquisition of data for research
purposes was done with no impact on the clinical objectives
of the patient stay. The data recorded for clinical purposes
are stored in a database compliant with HIPAA regulations.

The two patients analyzed in this study had stereotaxic
depth electrodes implanted. Table 1 summarizes patient
information for the two subjects used in this study. Fig. 1
shows a diagram of subject 005’s brain and the placement of
the depth electrodes. Each depth electrode had approximately
10 recording contacts along the length of the electrode.
The recording contacts were numerically labeled going from
deepest to most superficial. For example, if electrode B had
10 recording sites, then B1 would be the deepest contact and
B10 would be the most superficial contact.

TABLE I
PATIENT INFORMATION

Subject Age | Sex Handedness | Seizure
Location

002 38 F Right Right Temporal
Lobe

005 27 F Right Right Mesial
Temporal Lobe

iy

Fig. 1. Diagram of electrode placement for subject 005.
B. Data Analysis

1) Determining the Frequency Band for Each Patient:
The frequency band for each patient was determined by

choosing the frequency band that showed the greatest change
in the ranked centrality values of the network near seizure
onset.

2) Computing Network Connectivity over Time: Coher-
ence between two channels was computed as a metric of
the connectivity between those two channels. A sliding 5-
second window with a displacement of 1-second, was used
to calculate coherence values for 5-second blocks of data.
Within each 5-second window, a 1-second sliding window
was used to compute an average coherence over the 5-second
window. The 1-second sliding window had a displacement
of 0.25 seconds. For each 1-second window, the signal
from each channel was preprocessed by multiplication by
a Hamming window. For a given 1-second window, the
preprocessed signal from channel ¢ will be referred to as 5.
Then, for each channel, the autospectral density of S; was
computed. Autospectral density of S; was defined as |F(.S;)|,
where F is the discrete Fourier transform. For each pair of
channels, the cross-spectral density of the two preprocessed
channels was computed. Cross-spectral density of S; and
S; was defined as the point-wise multiplication of F(.S;)
and F(S;). Then, the average of the cross-spectral density
values and the average of the autospectral density values
were taken across all of the 1-second windows within a
5-second window. For each 5-second window, this yielded
an average cross-spectral density for each pair of channels
(Gy) and an average autospectral density for each channel
(G4y). Then, the coherence betwee2n two channels x and
y, was calculated as C,, = Cf;igw For every 5-second
window, an adjacency matrix, A, is constructed, where each
entry Aij = CZJ

3) Computing Eigenvector Centrality over Time: The
centrality of a node is defined as the weighted sum of the
centralities of its neighbors. The centrality of node i, x (%),
is mathematically defined as

x(i) = ZAijx(j)

where A is the connectivity matrix of the network. Written in
matrix notation, this becomes x = Ax. It can be shown that
x is the eigenvector corresponding to the largest eigenvalue
in the solution to the eigenvalue problem Av = Av.

At each point in time, singular vector decomposition is
performed on A. Due to the way A is constructed, A is al-
ways a square symmetric matrix. Therefore, the first singular
vector of A is equal to the eigenvector of A corresponding
to the largest eigenvalue. Thus, the first singular vector is
the centrality vector of the network. The first singular vector
of A is computed at every time point and the centralities
of the nodes in the network can be tracked over time. The
centrality vectors are now ranked and each element in the
vector is assigned the value of its rank. For example, the
node with the lowest centrality is reassigned to 1; the node
with second lowest centrality is reassigned to 2, and so on.

4) Determining the Brain States: Clustering is performed
on the ranked centrality vectors to identify different brain
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states. The connectivity of the brain changes over time and
over the course of a seizure and the centrality vectors capture
these changes. K-means clustering was used to cluster the
ranked centrality vectors. Once the ranked centrality vectors
are clustered into discrete states, then a state transition
diagram is drawn for each seizure and the state transition
probabilities can be estimated.

III. RESULTS

All the results will be shown for subject 005. The same
steps were performed for subject 002.

A. Determining the Frequency Band for Each Patient

For both patients analyzed, the beta frequency band (13-
25Hz) showed the most modulation in the network connec-
tivity near seizure onset. For this reason, beta was chosen as
the frequency band to analyze in both patients.

B. Computing Network Connectivity over Time

Coherence in the beta band was computed between each
pair of nodes for every S5-second window of data, using a
5-second sliding window with a displacement of 1-second.
For each 5-second window, the coherence values were stored
in a connectivity matrix A.

C. Computing Eigenvector Centrality over Time

The first singular vector of A was computed for each 5-
second window. The bottom row of figs. 2 and 3 show plots
of the first singular vectors over time for subject 005. These
plots show snapshots of the data around the patient’s seizures
as well as a snapshot of inter-ictal data and a snapshot of
anesthesia data.

D. Determining the Brain States

By looking at the bottom plots in Figs. 2 and 3, one can
visually identify distinct states. These states were formally
identified by k-means clustering, where k is the number of
clusters. For subject 005, k-means clustering was run on just
the seizure snapshot data (100 seconds before each seizure,
each seizure, and 100 seconds after each seizure) with k=11.
Then, k-means clustering was run on all the inter-ictal data
with k=2. One of the inter-ictal cluster’s centroid matched
very closely to the centroid of a cluster identified by the
clustering of the seizure snapshot data, so these two clusters
were merged by taking the point by point average of the two
centroids. Then, k-means clustering was run on all of the
anesthesia data with k=2. This yielded a total of 14 clusters
for subject 005, with each cluster representing a discrete
brain state. Using these 14 states, state membership was
plotted over time. These plots can be seen in the top plots
of Fig. 2 and Fig. 3.

The state transitions in a simplified diagrammatic format
are shown in Fig. 4. Six seizure states were identified and
they are labeled S1 through S6. Note the consistency amongst
the beginning of each seizure. Each seizure enters into S1
then goes to S2.

For subject 002, k-means clustering was run on the seizure
snapshot data with k=8. The same procedure was followed

Seizure #2 Seizure #3 Seizure #4

Seizure #1

State Membership

Electrode Index

Fig. 2. Top: Cluster membership over time for seizure snapshots. Bottom:
First singular vectors over time. X-axis is time. Y-axis is electrode index.
Color indicates ranked centrality. The letters along the Y-axis are the
electrode labels that correspond to the electrode labels in Fig. 1. The pink
line indicates seizure onset and the white line indicates seizure end. The
plots show 100 seconds before seizure, the length of the seizure, and 100
seconds after seizure.
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Fig. 3. Cluster membership over time for inter-ictal snapshot and anesthesia
data. Bottom: First singular vectors over time. X-axis is time. Y-axis is
electrode index. Color indicates ranked centrality. The letters along the Y-
axis are the electrode labels that correspond to the electrode labels in Fig.
1.

and five seizure clusters were identified, S1 through S5. It
was again found that all seizures entered into S1 and then
progressed to S2. Note that these states are different from the
states identified in subject 005 even though the same notation
is used for both subjects.

E. Comparing Foci Centrality to Brain State

For subject 005, recording sites B1-3 and C1-2 were
clinically identified as the seizure foci. The centrality of the
foci nodes were examined for each state. For subject 005, the
foci had low centralities (“foci cold”) in states S1 and S2 and
high centralities (“foci hot”) in state S4. This is illustrated
by the colors in Fig. 4. Fig. 5 shows the centrality values for
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Fig. 4. State transition diagrams for subject 005’s four seizures. Blue
indicates a “foci cold” state and red indicates a “foci hot” state.

each recording site for states S1, S4 and an anesthesia state.
The letters at the top of the plots indicate the electrode. The
recording sites within an electrode block go in increasing
order from left to right. For example, in the block marked
B, B1 is the leftmost point in that block. In S1, the foci (B1-3
and C1-2) are clearly the least central nodes in the network.
In S4, the clinically identified foci have high centralities but
there are other nodes that have equally high centralities. The
electrodes that also have high centralities in this state are T
and I, which are nearby to B and C as you can see from Fig.
1. In the anesthesia state, the foci nodes also are the least
central. For this patient, the foci nodes can be identified from
the anesthesia data alone.

For subject 002, recording sites A2 and E2 were clinically
identified as the seizure foci. Again, the centrality of the foci
were examined for each state. It was again found that the foci
had low centralities in states S1 and S2 and high centralities
in state S4. The centralities of the foci for this patient did not
clearly identify them as the foci. Additionally, the anesthesia
data for this patient did not seem to highlight the foci in a
meaningful way.
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005.

Centralities of nodes in S1, S4, and anesthesia state for subject

IV. CONCLUSIONS

From the preliminary analysis of this data, it appears that
there are discrete brain states characterized by the connectiv-
ity of the brain. There are consistent brain states seen in the
beginnings of seizures across seizures for a given patient
and the foci have low centrality in these states. Towards
the middle and the end of seizures, the foci have high
centrality. In one patient, the connectivity of the anesthesia
state highlighted the foci, and in one patient, it did not.
Ideally, a technique will be developed to perform seizure foci
localization from anesthesia recordings alone. This would
allow neurosurgeons to identify seizure foci much more
quickly and could greatly reduce the amount of time patients
need to be monitored in the epilepsy monitoring unit.
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