
 

 

 

 

Abstract— The design of a high-density neural recording 

system targeting epilepsy monitoring is presented. Circuit 

challenges and techniques are discussed to optimize the 

amplifier topology and the included OTA. A new platform 

supporting active recording devices targeting wireless and 

high-resolution focus localization in epilepsy diagnosis is also 

proposed. The post-layout simulation results of an amplifier 

dedicated to this application are presented. The amplifier is 

designed in a UMC 0.18µm CMOS technology, has an NEF of 

2.19 and occupies a silicon area of 0.038 mm2, while consuming 

5.8 µW from a 1.8-V supply. 

I. INTRODUCTION 

Frequent seizures are typical manifestations of epilepsy 
[1]. Approximately 50 million people worldwide are 
diagnosed with epilepsy and more than 30% of them do not 
respond well to anticonvulsants. For many of these patients 
with intractable seizures, the ablative surgery may provide a 
favorable outcome [2]. In some cases, presurgical evaluation 
requires an invasive recording phase, consisting in 
implanting brain cortical or depth electrodes in order to 
determine the precise epileptic focus. Then, resection 
surgery can be performed in these areas. In such presurgical 
evaluation phase, multiple wires connect the electrodes to 
the amplifiers and recording equipment, leaving the patient 
bound to a bed with an open brain for several days until 
sufficient electrocorticographic (ECoG) information is 
recorded to accurately reveal their foci [3]. In addition to the 
complexity of the procedure, these standard electrodes have 
a large contact area and a relatively large spacing which can 
effectively average the activity of millions of neurons and 
cause significant loss of information in higher spatial 
resolutions of the cortical units. The development of an 
implantable system enabling continuous monitoring over 
long periods of several weeks with high spatial resolution 
microelectrodes appears to be a relevant goal for the next 
generation of such therapeutic electrodes. 

Current solutions for high-density recording of epileptic 
activity either consist of spanning the cortical layers using 
linear array of multielectrodes penetrating the brain tissue 
[4] or implanting hybrid systems including standard 
macroelectrodes along with microwire arrays with bundles 
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of wires connected to the electrodes [5]. Considering 
biocompatibility issues, none of these approaches are 
feasible for a long-term monitoring period prior to surgery. 

A solution is proposed consisting of using highly flexible 
and thin substrates to create active electrode arrays 
combining a large number of electrodes with integrated 
circuits distributed over a relatively large area over the 
cortex (Fig. 1). By placing several recording systems over 
potentially epileptic parts of the cortex previously detected 
by standard non-invasive methods, sufficient information 
pertaining to the localization of the epileptic foci with high 
spatial resolution quality can be recorded. The long-term 
implantation is enabled by the presence of an RF chipset 
located in a burr hole in the skull for remote powering and 
wireless data transmission (Fig. 1). Recording with flat non-
penetrating electrodes which is a main concern for the safety 
of patients enables the surgeon to perform a minimally 
invasive surgery. 

This paper is organized as follows. Section II presents the 
system architecture and a comprehensive analysis of the 
different LNA topologies and OTA circuits. Section III 
presents the post-layout simulation results of the proposed 
architecture.  

II. SYSTEM OVERVIEW 

For decades, ablative surgery applied to the treatment of 
epilepsy has utilized intracranial EEG recorded over a 
narrow bandwidth (1–100Hz) from large (1–10mm 
diameter), widely spaced (5–10mm) electrodes placed on the 
surface of the cortex [6]. Recently, several groups of 
researchers have investigated the role of higher frequency 
signals in the generation of convulsions. Researchers in [7] 
have shown that high frequency oscillations in the ripple 
(80-250Hz) and fast ripple (250-1000Hz) frequency range 
may be signatures of an epileptogenic brain. Using hybrid 
electrodes, they have found that higher frequency signals are 
primarily generated by highly localized, sub-millimeter scale 
neuronal assemblies. Authors in [6] reported that seizure-
like events which are not detectable using routine clinical 
macroelectrodes were observed on isolated microelectrodes. 
Recognizing the pertinence of high resolution recordings on  

 
 

Figure 1.  Schematic representation of the proposed distributed 

monitoring system. 
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the surface of the brain, we develop low-noise amplifiers 
that operate in an intermediate range of frequency to record 
low as well as high frequency ripple and/or spiking signals 
which can be representatives of epilepsy.  

A. Neural Amplifier Topology 

The low-noise amplifier (LNA) used for amplifying and 
filtering weak neural signals is a fundamental block in almost 
all integrated neural recording systems. In spite of its 
widespread use in medical sensing applications, the LNA is 
designed empirically. In the following, analytical expressions 
are presented and optimum solutions for different design 
parameters of LNA’s are proposed.  

The way in which the signals in the frequency range of 
interest should be amplified while rejecting the large random 
DC offsets generated at the electrode-tissue interface is a 
design criterion of major importance. For this purpose, 
closed-loop architectures are favored considering their 
superior linearity, gain stability, high PSRR and additional 
feedback advantages over open-loop topologies. The authors 
in [8] have made a comparative study of the noise, power and 
area of three distinct topologies (Fig. 2) and have shown that 
the conventional capacitive feedback topology (Fig. 2 (a)) 
performs better in terms of area and power consumption for a 
given input-referred noise. The gain of the second topology 
(Fig. 2 (b)) is defined by the open-loop gain of the first OTA 
(A1).  Consequently, the area overhead due to the input 
capacitors can be significantly reduced. The major drawback 
in addition to gain variation is the added noise of the second 
OTA (A2). The third topology (Fig. 2 (c)) sets the gain by the 
product of two capacitor ratios which is expected to result in 
area reduction. The calculated NEF [8] shows the effect of 
the second OTA on the input-referred noise which requires a 
larger area compared to (a) to compensate the added noise. In 
addition, an attenuator in the feedback path and the potential 
related instability issues, as well as the need to insert a 
negative sign in the transfer function of the loop gain, are 
drawbacks of this topology. Consequently, the conventional 
topology (a) is considered the most efficient and reliable.  

Careful consideration should be devoted to the selection 
of single or multi-stage amplification, as well as bandwidth 
requirements of different stages. Using an analysis similar to 
[9], it is possible to calculate the optimum gain of a single-
stage topology to minimize the area of the amplifier for a 
given input-referred noise. It is assumed that the area is 
dominated by the input and load capacitors and the noise is 
limited to the thermal noise of the input pair of the OTA. The 
effect of flicker noise is discussed further.  

The input-referred thermal noise PSD for a differential 
pair operating in subthreshold region is expressed as  
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where 
m

g is the transconductance of the input transistors,  

is the subthreshold slope factor, K is Boltzmann’s constant 
and T is the absolute temperature. Assuming the amplifier as 
a single-pole stage, the equivalent brick-wall bandwidth is [9]  
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Figure 2.  Three feedback-based LNA topologies.  
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To achieve a lower input-referred noise, a higher gain is 

needed to optimize the area of the amplifier. 

Considering a second stage, as shown in Fig. 3, the 

optimization of the area depends on the bandwidth settings of 

the stages. If the high cut-off frequency is set by the first 

stage, the optimum gain of this stage can be found using (4), 

and replacing this value in (3) yields the sum of CL1 and C21 

which together form the approximate loading capacitor at the 

output of the first stage. If a high overall gain is needed, a 

large capacitor at the input of the second stage and a small 

load capacitor in the first stage are mandatory. For a low 

input-referred noise, a high gain is required in the first stage 

and the advantage of two-stage over single-stage relates to a 

higher overall gain (more than 50 V/V or 100 V/V for typical 

values) that is achieved by properly dividing the optimal load 

capacitor between CL1 and C21. Hence, the common method 

consisting of dividing the gain in identical ratios between 

stages (e.g. 10×10×10) cannot be efficient, unless necessary 

attention is given to the bandwidth settings of the stages. 
If the high cut-off frequency is set by the second stage, 

the total input-referred rms noise including the effect of 
second stage is             
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Figure 3.  Two-stage capacitive feedback topology. 
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stage and replacing CL2 from (5) into (6), and optimizing with 
respect to AM1 and AM2 results in the optimum values of 
gains. As a practical case, for a unique value of 200fF of 
feedback capacitors, an input referred noise of 1.18µVrms 
requires an optimum gain of 100V/V for one stage, to 
minimize the area. A large value of 40.4pF as the sum of 
input and feedback capacitors and another 40pF as the load 
capacitor for limiting the bandwidth are needed. 

Considering the two-stage topology with high cut-off 
frequency set by the first stage the optimization results in the 
same gain and input capacitors for the first stage and 40pF as 
the sum of CL1 and C21. A higher gain (than 100V/V) can be 
achieved but the total capacitor is large. For the third case in 
which f H 

is set by the second stage and having a typical value 
of gm2/gm1 equal to 0.05, AM1,opt and AM2,opt are 10 and 20, 
respectively. The overall gain is 200 and the total capacitance 
including the input and load is 12.6pF. For smaller ratios of 
gm2/gm1, the required gain of the first stage is set larger to 
suppress the additional noise of the second stage. This 
method can be extended for topologies with more than two 
stages and the stage which sets the high cut-off frequency 
requires a relatively large gain to suppress the total input- 
referred noise. As mentioned in [10] and analytically 
demonstrated in this Section, the two-stage topology achieves 
a better performance under the condition that f H is set by the 
second stage. The optimal distribution of the gain between 
the stages and the value of the input capacitors and its 
relation to the area also depend on the flicker noise which is 
discussed further. 

B. Optimized OTA  

The OTA is a critical block irrespective of the LNA’s 
implementation topology. Large input transistors, source 
degeneration resistors [11, 12], improved effective 
transconductance [12] and severe current scaling in the non-
input branches [11] are the main approaches used to achieve 
noise reduction. Among commonly used topologies, the 
telescopic cascode offers the best noise-power trade-off due 
to the smaller number of current branches and transistors 
contributing to the overall noise [13]. Biasing the transistors 
in weak and moderate inversion rather than strong inversion 
results in relaxed headroom requirements and provides 
sufficient swing at the output of the telescopic amplifier. In 
order to further suppress the noise of a telescopic cascode 
topology, degeneration resistors are used which results in a 
significant reduction of thermal as well as flicker noise (Fig. 
4 (a)). The total current noise at the output node in Fig. 4(b) 
is expressed as          
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The second term is due to the flicker noise of M2. The above 
equation is maximum for R = 0 and becomes close to zero for 
larger values of R. A large R occupies a large area, limits the 
voltage swing and affects the biasing points of the transistors. 
In a source-degenerated folded-cascode topology (Fig. 4(c)), 
a large gm7,8 R1,2 and a large ro7,8 are mandatory to drive the 
largest proportion of current to the output and prevent Gm,eff 
reduction.  This results in large W and L values in the bottom 
transistors, which summed up to the large area of the resistors  
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Figure 4.  a) Proposed OTA. b) Noise model of the degenerated branch. 

c) Source degenerated folded cascode OTA [11]. 

and the larger resistor in the biasing branch [11] results in 
limited area efficiency. In a telescopic topology, Gm,eff 

degradation is not an issue and careful consideration should 
be devoted to the size and operation regimes of the bottom 
transistors. A moderate resistance value of 210K has been 
chosen to optimize the performance in terms of operation 
regimes of the transistors, dc gain, area and input-referred 
noise. The p-implanted poly resistors are used with 10 
matched units in each branch which are laid out in parallel 
and connected in series. 

C. Flicker Noise Effect 

Depending on the size of the input differential pair, 

flicker noise participates in the total input/output noise of the 

amplifier. Increasing the size of the input transistors to 

suppress 1/f noise is accompanied by producing a large 

parasitic capacitance which results in a larger level of noise 

transferred to the input of the amplifier. Hence, an optimum 

size of the input transistors should be derived that provides 

better noise performance. Assuming that 1/f noise is 

dominated by the input transistors, and modeling the 

parasitic capacitance as shown in Fig. 5(a), the total input 

referred noise PSD is expressed as 
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The effective parasitic capacitance at the gate of PMOS 

input transistors in weak inversion (WI) is the sum of CGS, 

CGB, and the Miller factor of CGD and is equal to 
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Figure 5.  a) Capacitive feedback-based LNA with parasitic capacitors.  

b) Tunable symmetric resistor. 
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Figure 6.  Layout of the neural amplifiers and microelectrodes.  
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Lov is the overlap length and Cox is the oxide capacitance. 

Replacing (9) as 
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A larger input capacitance and closed-loop gain results in 

a larger optimum size of the input transistors but the 

corresponding noise level is smaller. Nevertheless, over-

increasing the size of the transistors beyond the optimum 

value requires a larger input capacitance to compensate the 

increased noise level leading to a suboptimal area usage. In 

the designed OTA, the optimum point considering both 

thermal and flicker noise occurs at WL  250µm
2
 and a size 

of 500µm/0.5µm of the differential input pair is chosen.  

D. Tunable Resistor 

A controlled high-value and low-area resistor is needed to 
set and tune the low cut-off frequency. Resistors based on 
[14] are used (Fig. 5(b)). M1 and M2 implement high value 
resistances and MB provides the source-gate voltage used to 
tune M1 and M2 through the bias current (IC). Using these 
resistors the low cut-off frequency is tuned within a range of 
34Hz to 160Hz with a W/L of 250nm/500nm of the 
transistors M1 and M2.    

III. SIMULATION RESULTS 

Following the above analysis, two prototypes of neural 

amplifiers are designed and implemented in one and two 

stages for the amplification of neural signals recorded on the 

surface of the cortex (Fig. 6). Fig. 7 shows the simulated 

frequency response of the two-stage high-gain and single-

stage tunable-BW amplifiers. The midband gain of the two-

stage topology is realized by the product of two capacitive 

ratios of 20 and 11. The high cut-off frequency is limited in 

the second stage. The total input-referred noise of this 

amplifier integrated in the frequency range of 1Hz to100kHz 

is 1.77µVrms, thanks to its low-noise OTA and appropriate 

gain ratios.  The noise is computed by dividing the output 

noise by the midband gain and integrating within the desired 

frequency range. Table Ι presents a summary of the results 

and a comparison with published works. 
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Figure 7.  Simulated frequency response of the amplifiers. 

TABLE I.  POST-LAYOUT SIMULATION RESULTS 

LNA Simulation Results and Comparision

Parameter

Technology (µm CMOS)

This Work

2-Stage 1-Stage
[12] [11] [13] 

0.18 0.18 0.180.6 0.5

Supply Voltage (V)

Supply Current (µA)

Gain (dB)

fL (Hz)

fH (kHz)

Input-Referred Noise (µVrms)

NEF

Area (mm
2
)

CMRR (dB)

PSRR (dB)

1.81.8 2.8 2.8 1.8

3.22 2.84 0.845 2.7 4.4

45.2 39.9 39.4 40.8 39.4

18
30-160

 Tunable

0.7-2.5

 Tunable
3.3 1.3 5.3 7.2

0.36 45 10

3.071.30 3.06 3.51.77

0.13 0.160.048 0.0620.038

66 6678 70.189

3.09 2.671.94 3.352.19

80 7557 63.844

 
REFERENCES 

[1] L. D. Iasemidis, “Epileptic seizure prediction and control,” IEEE 
Trans. Biomed. Eng., vol. 50, pp.549–558, May 2003. 

[2] Live Webcast of “RESECTIVE SURGERY FOR REFRACTORY 
EPILEPSY”, Texas Medical Center, Houston, Texas. (2005). 
[Online]. Available: http://www.orlive.com/ 

[3] G. Anderson and R. Harrison, “Wireless integrated circuit for the 
acquisition of electrocorticogram signals”, Proc. IEEE Int. Symp. 
Circuits and Systems (ISCAS), pp.2952- 2955, 2010.  

[4] I. Ulbert, G. Heit, J. Madsen, et al., “Laminar analysis of human 
neocortical interictal spike generation and propagation: current source 
density and multiunit analysis in vivo”, Epilepsia, pp.48–56, 2004. 

[5] J. J. Van Gompel, et al., “Phase I trial: safety and feasibility of 
intracranial electroencephalography using hybrid subdural electrodes 
containing macro- and microelectrode arrays”, Neurosurg Focus, vol. 
25, 2008. 

[6] M. Stead, et al., “Microseizures and the spatiotemporal scales of 
human partial epilepsy”, Brain, vol.133, pp.2789–2797, 2010. 

[7] G. A. Worrell, et al., “High-frequency oscillations in human temporal 
lobe: simultaneous microwire and clinical macroelectrode recordings”, 
Brain, vol. 131, pp.928-37, 2008. 

[8] Ruiz-Amaya, J.,  Rodriguez-Perez, A.,  Delgado-Restituto, M.,  “A 
comparative study of low-noise amplifiers for neural applications”,  
International Conference on Microelectronics (ICM), pp.327- 330,  
Dec. 2010.  

[9] R. R. Harrison, “The Design of Integrated Circuits to Observe Brain 
Activity”, Proceedings of the IEEE. vol. 96, No. 7, July 2008.  

[10] H. Rezaee, N. Ravanshad, R. Lotfi, K. Mafinezhad, A. M. Sodagar, 
“Analysis and Design of Tunable Amplifiers for Implantable Neural 
Recording Applications”, IEEE Journal on Emerging and Selected 
Topics in Circuits and Systems, vol.1, no.4, pp.546-556, Dec. 2011. 

[11] W. Wattanapanitch, M. Fee, R. Sarpeshkar, “An Energy-Efficient 
Micropower Neural Recording Amplifier”, IEEE Transactions on 
Biomedical Circuits and Systems, vol.1, no.2, pp.136-147, June 2007. 

[12] C. Qian, J. Parramon, E. Sanchez-Sinencio, “A Micropower Low-
Noise Neural Recording Front-End Circuit for Epileptic Seizure 
Detection”, IEEE Journal of Solid-State Circuits, vol.46, no.6, 
pp.1392-1405, June 2011. 

[13] V. Majidzadeh, A. Schmid, Y. Leblebici, “Energy Efficient Low-
Noise Neural Recording Amplifier With Enhanced Noise Efficiency 
Factor”, IEEE Transactions on Biomedical Circuits and Systems, 
vol.5, no.3, pp.262-271, June 2011. 

[14] A. Tajalli, Y. Leblebici, “A widely-tunable and ultra-low-power 
MOSFET-C filter operating in subthreshold”, Custom Integrated 
Circuits Conference, 2009. CICC '09. IEEE, pp.593-596, Sept. 2009. 

Microelectrodes

1
.5

2
5

 m
m

Neural Amplifiers

Test Microelectrodes with sizes 
of 60×60 and 80×80 µm2  
created from pad-like structures 
inside the chip. They will go 
under a post-CMOS process 
consisting in placing thin layers 
of SU-8 and surrounding 
platinum. The spacing of the 
electrodes is 250 and 150 µm.
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