
  

 

Abstract—Objective and rater independent analysis of 

movement impairment is one of the most challenging tasks in 

medical engineering. Especially assessment of motor symptoms 

defines the clinical diagnosis in Parkinson`s disease (PD). A 

sensor-based system to measure the movement of the upper and 

lower extremities would therefore complement the clinical 

evaluation of PD.  

In this study two different sensor-based systems were 

combined to assess movement of 18 PD patients and 17 healthy 

controls. First, hand motor function was evaluated using a 

sensor pen with integrated accelerometers and pressure 

sensors, and second, gait function was assessed using a sports 

shoe with attached inertial sensors (gyroscopes, 

accelerometers).  

Subjects performed standardized tests for both extremities. 

Features were calculated from sensor signals to differentiate 

between patients and controls. For the latter, pattern 

recognition methods were used and the performance of four 

classifiers was compared. In a first step classification was done 

for every single system and in a second step for combined 

features of both systems. Combination of both motor task 

assessments substantially improved classification rates to 97% 

using the AdaBoost classifier for the experiment patients vs. 

controls. 

The combination of two different analysis systems led to 

enhanced, more stable, objective, and rater independent 

recognition of motor impairment. The method can be used as a 

complementary diagnostic tool for movement disorders.  

I. INTRODUCTION 

The diagnosis in Parkinson`s disease (PD) is based on 
specific motor symptoms, which appear consecutively in all 
extremities. Bradykinesia, tremor, rigidity, and postural 
instability are the cardinal symptoms that define the diagnosis 
of PD [1]. To achieve comparable results of the current state 
of motor symptoms, the Unified Parkinson Disease Rating 
Scale (UPDRS) – Part III is most commonly used [2]. To 
assess these symptoms, physicians perform standardized 
movement tests focusing on the upper and lower extremities. 
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This examination reflects only the symptoms at a given 
moment in time and highly depends on raters’ experience. To 
exclude these drawbacks, sensors can be used to objectively 
measure movement of the upper and lower extremities.  

To differentiate between PD patients and controls, Salarian 
et al. used gyroscopes attached to shoes [3]. The groups of 
Lord, Mariani and Hausdorff also measured gait impairment 
with gyroscopes respectively accelerometers to recognize and 
rate PD [4-6]. 

Bäzner et al. analyzed the motor function of hands with 
tapping tests and showed significant differences comparing 
patients with PD, subcortical vascular encephalopathy and 
healthy controls [7]. It has been shown by Ünlü et al. that the 
biometric smart pen, which was used in this study, is able to 
recognize typical symptoms of PD [8]. 

Patel et al. published a system that analyzed lower and 
upper extremities. No distinction between PD and controls 
was made in this study. However, they rated distinct 
symptoms like tremor, bradykinesia, dyskinesia with eight 
accelerometers [9]. Signals of single symptoms are 
substantially more homogeneous. Therefore a rating of single 
symptoms with inertial sensors leads to good results [10-12].  

Several studies used sensor systems to evaluate gait [3-6, 
13], hand motor function [7, 8], or only single symptoms for 
lower and upper extremities [9-12]. However, a clinical 
examination, e.g. rating of the UPDRS – Part III, combines 
tests of upper and lower extremities. Thus, in the presented 
approach, two different sensor-based systems for data fusion 
on feature level and unified analysis of hand motor function 
and gait were used [14]. Analogous to a clinical examination, 
data from gait and hand motor function are combined to 
obtain an improved rating. The developed system reveals a 
comprehensive assessment of movement impairment 
supporting the clinical examination by a movement disorder 
specialist.  

II. METHODOLOGY 

A. Sensor platform and setup 

Hand motor function analysis 
To record hand motor function, the Biometric Smart Pen 

(BiSP, University of Applied Sciences Regensburg, 
Germany) was used. This electronic ball-pen measures six 
sensor signals, which include three acceleration axes, finger 
grip force during holding the pen, refill force and vibration 
sound. The BiSP pen measures handwriting, drawing and 
gesture movements on paper or in free air. A SCA3000-D01 
accelerometer (VTI Technologies, Vantaa, Finland) is built 
in. For grip sensing a Piezo Electric Film (PEF), DT4-028K 
(Measurement Specialities, VA, USA) is wrapped around the 
gripping area of the pen. The recordings of refill dynamics 
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and acoustics are based on a stack type piezo component 
PSt150/2x3/5 (Piezomechanik GmbH, BY, Germany), which 
is placed between end of the refill and body of the pen. 
Sensor data of piezo element is filtered from 0 to 40 Hz for 
dynamics and from 100 to 500 Hz for vibration sound, what 
results in two different signals. Transmission of the data to a 
recording notebook is done based on a HID-USB interface. 
The software to record signals was implemented by the 
University of Applied Sciences Regensburg. The 
accelerometer range is fixed to ± 2g and the sampling 
frequency to 1000 Hz. 

 

Figure 1 Biometric Smart Pen (BiSP) for analysis of hand motor function 

(A) and sensor shoe setup – sport shoe with attached Shimmer sensor unit – 
for gait analysis (B) 

Gait analysis 
For gait analysis, 3D gyroscopes and 3D accelerometers 

were used to measure angular velocity and acceleration. 
These sensors are integrated in the Shimmer sensor unit 
(Shimmer Research Ltd., Dublin, Ireland), an extensible 
platform for real-time motion sensing [15]. The sensor 
platform contains a MSP430F1611 microprocessor running 
TinyOS with a MMA7260Q accelerometer (Freescale 
Semiconductors, Austin, TX, USA) and a built-in 500 series 
MEMS gyroscope (InvenSense, Sunnyvale, CA, USA). Data 
were directly transmitted via Bluetooth to a notebook for 
recording. An identical shoe model in different sizes was 
used to provide comparable conditions for data collection. 
The sensor units were attached to the lateral heel of both 
shoes (Fig.1). Data were collected with the software 
BioMOBIUS (TRIL Centre, Dublin, Ireland). The 
accelerometer range was set to ± 4g, the gyroscope range to ± 
500 degree/sec and the sampling frequency to 50 Hz.  

B. Data collection 

Data was collected in the movement disorder outpatient 
unit of the University Hospital Erlangen. Selected patients 
and controls (Tab. 1) were a subpopulation of an ongoing 
study with PD patients. In this study patients underwent 
examination of a movement disorder specialist immediately 
followed by data recording with the movement analysis 
systems. To select the subpopulation for this study, including 
criteria were A) that subjects took part in hand motor 
function and gait analysis, and B) that selected patients and 

controls build age matched groups. Participating subjects had 
to give informed consent based on approval from the ethical 
committee of the University Hospital of Erlangen (Re.-No. 
4208). Included PD patients were able to walk independently 
(Hoehn and Yahr Scale [16] < 4). Subjects with other upper 
and lower extremity impairment, due to muscular skeletal 
disease, were excluded from the study.  

Hand motor function tests 

For the present study six hand motor function tests were 

used. The tests consisted of drawing on paper and 

movements in the air and were partially derived from 

neurological standard examinations. Movements were 

executed with the writing hand of a patient.   

 On paper: 

 Drawing twelve circles at the same place 

 Tracing four preprinted spirals 

 Tracing four preprinted meanders 

 In the air: 

 Drawing twelve circles around a virtual point 

 Performing pronation/supination movements for 20 s 

 Performing finger tapping on the pen for 20 s  

Pronation/supination movements and finger tapping are 

elements of the UPDRS - Part III and were performed at a 

convenient speed for the subject.  

TABLE I.   CHARACTERISTICS OF PATIENTS AND CONTROLS 

Characteristics and clinical parameters of Parkinson`s patients and healthy controls.  

*  Significant difference in gender (p=0.025 Chi-Square test) 

** Significant difference in depression score (p=0.006 Student`s T-test) 

Gait tests 

In order to generate comparable data, subjects underwent 

standardized gait tests [17], which partly corresponding to 

UPDRS – Part III [2, 18]. 

 10-meter walk: Subjects walked 10 m four times at a 

comfortable walking speed 

 Heel-toe tapping: While the subject was sitting, heel 

and toes were tapped alternately on the floor for 20 s 

 Circling: While the subject was sitting, a circling foot 

movement (diameter: about 30 cm) was performed 

10 cm above the floor for 20 s 

C. Feature extraction 

For both systems sensor signals underwent different 
preprocessing steps. Signals were cut manually at the 
beginning and end of recording. To eliminate measurement 
noise, sensor data was filtered with a Chebyshev low pass 
filter [19]. Order and cut-off frequency of the filter were 
selected feature dependent. 

Characteristics 
PD Patients 

(n=18) 

Controls 

(n=17) 

Sex (male:female)*   11:7   4:13 

Age (y, mean, ±SD)  61.7 ± 9.7 60.5 ± 8.0 

Age of onset (y, mean, ±SD)  54.5 ± 10.4   - 

Disease duration (y, mean, ±SD)  7.2 ± 5.6   - 

H&Y (±SD)  2.0 ± 0.8   - 

UPDRS motor score (±SD)  17.9 ± 12.2   - 

Levodopa dose (mg/d, ±SD)  447.7 ± 378.1   - 

Depression score (Zung, ±SD)**  47.8 ± 10.8 38.8 ± 6.7 

5123



  

A set of standard features were extracted for hand motor 

function analysis. Two main types of features were 

calculated from each test and signal channel. 1) Sequence 

dependent features from complete writing or movement tests. 

Length is depending on execution time. 2) Frequency 

dependent features, calculated from one movement sequence. 

For the spiral and meander drawing, the average of the 

four features of each single repetition was used. This was 

preferred in order to obtain more robust features. The number 

of extracted features from six signal channels and six hand 

motor function tests was 828 in total.  

Biometric gait features were extracted from recorded 

sensor data of gyroscopes and accelerometers placed on the 

left and right shoe. Features were calculated analogous to a 

previous study [17] out of: 1) Single steps of 10 meter walk, 

2) Gait sequences of 10 meter walk (complete test),  

3) Test sequences (15 seconds) of heel-toe tapping and 

circling and 4) from Fourier-transform of gait sequences and 

test sequences for a frequency-based analysis [19]. Features 

were computed for sensor units on both shoes and three 

sensor axes per gyroscope and accelerometer. Step features 

were calculated for every single step and averaged per person 

and test. This approach was chosen to make the features more 

robust resulting in 286 features for the walking test and 204 

for each other test.  

A subset of extracted features used for classification 

experiments is listed in Table II.  

D. Feature selection and classification experiments 

For feature selection two methods were compared and 
analyzed with every classifier used.  

First, linear forward selection was used with a correlation-
based feature subset selection (CFS) criterion [20]. Features 
with a high correlation to class labels were selected. A low 
inter-correlation was preferred.  

The second method was a linear forward selection with a 
backtracking facility. The criterion for feature subset 
selection was accuracy of chosen classifier for current 
classification experiment [21].  

There is no single classifier, which is optimal for all 
classification tasks [22]. Therefore, three different classifiers 

were compared. Linear Discriminant Analysis (LDA) [22], 
the Support Vector Machine (SVM) [22] with a linear kernel 
and AdaBoost [22] were employed.  

 As classification task, PD vs. control group experiments 
were conducted for features of sensor shoe and smart pen 
alone, respectively, and afterwards for the combined feature 
set of both systems [14]. These three classification tasks were 
evaluated with all three classifiers resulting in nine single 
classification experiments.  

To compute classification accuracy leave-one-subject-out-
cross-validation (LOSOCV) [22] was used.  

TABLE III.  BEST CLASSIFICATION RESULTS FOR PD VS. CONTROL 

Sensor Classifier # features CR Sens. / Spec. 

Smart pen AdaBoost 1 14 89 94 / 83 

Sensor shoe SVM linear 2 9 91 88 / 94 

Combined AdaBoost 3 12 (5+7) 97 100 / 94 

1 AdaBoost, 30 iterations, CFS linear forward feature selection 
2 SVM linear, C=4.0, Classifier depending linear forward selection (backtracking=5) 
3 AdaBoost, 50 iterations, CFS linear forward feature selection 

CR: Classification rate, Sens.: Sensitivity, Spec.: Specificity 

III. EXPERIMENTS AND RESULTS 

For each experiment both types of feature selection 
methods were performed. The classifier depending selection 
was trained on the current classifier and the backtracking was 
fixed to five steps.  

In experiments with LDA as classifier no parameters had 
to be determined. Best fitting cost parameter C for linear 
SVM was evaluated in a range of 0.1 to 800 in decadic steps. 
Best iteration number for AdaBoost was evaluated in a range 
of 10 to 100 in steps of 10.  

Table II shows an overview of features, which are selected 
for best results. Best results and depending parameters for 
classification experiments are listed in Table III.  

IV. DISCUSSION 

The current study aimed to develop a system for combined 
analysis of hand and gait motor function impairment. The 
system was trained to differentiate between PD patients and 
healthy controls with sensors analyzing movement of lower 
and upper extremities. 

TABLE II.   SELECTED FEATURES FOR BOTH SENSOR SYSTEMS 

Feature Name  Category Description  

1 Mean Signal sequence Average of complete signal sequence 

2 Variance Signal sequence Measure for signal spreading, defined as the square of standard deviation 

3 Regression line gradient Signal sequence Local extreme values are extracted and regression line is fitted through  

4 Standard deviation of minima Signal sequence Standard deviation of  local extreme values 

5 Maxima minima difference  Signal sequence Difference between mean of maxima and mean of minima 

6 Autocorrelation maximum Signal sequence Maximum value of cross-correlation of the signal with itself 

7 Integral Signal sequence Expresses the area of the region in xy-plane bounded by the signal 

8 Root mean square Signal sequence Root Mean Square or quadratic mean is a statistical measure, useful especially for 

signals which vary in positive and negative range 
9 Dominant frequency Frequency analysis Characterizes the main speed of an test 

10 Energy ratio Frequency analysis Complete signal sequence energy divided by energy value of dominant frequency 

11 Energy in frequency band  Frequency analysis Energy in a frequency band describes parts of distinct frequencies in the signal, 
typical frequency bands for specific movements can be defined  

12 Regression line of windowed 

energy in frequency band 

Frequency analysis Regression line is fitted through energy values calculated for every window of a 

windowed Fourier-transform   
13 Fall gradient of stance phase Step feature Gradient from maximum positive rotation of  stance phase to heel-off  

List of classification relevant features: step features extracted from gyroscope z-axis (sagittal plane), signal sequence and frequency features usable for all 

axes of accelerometer, gyroscope, force and sound signals of sensor pen and sensor shoe 
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To deal with the substantial amount of features and to beat 
the curse of dimensionality [22], it was necessary to select the 
most important features for classification. Feature selection 
improves computational time as well as classification results 
[23]. Two methods were used to reduce the feature space 
from 1522 dimensions for combined analysis to a maximum 
of 32 dimensions. Resulting number of features for CFS 
method varied from 12 to 32 features. The excellent results 
for classifier dependent linear forward selection with a 
backtracking facility result in a feature space of 3 to 9. The 
reasons for this small feature space from the second method 
are possibly the high specification to the current classifier and 
the backtracking facility.  

In a first classification step both systems were evaluated 
independently and best classification results were calculated. 
In general, PD motor symptoms appear first in upper 
extremities [24]. With disease progression symptoms also 
affect lower extremities. Therefore a higher recognition rate 
from the sensor pen was expected. However results show 
recognition rates of PD patients from hand motor function of 
89% and for gait analysis of 91%. A possible explanation is 
that all tests with the sensor pen were done with the writing 
hand, which was in 17 of 18 patients the right hand, yet 10 of 
18 patients were left side affected.  

In a combined analysis an excellent classification accuracy 
of 97% was reached. It shows that a combined set of features 
could improve classification results again.  

For evaluation and calculation of classification accuracy 
LOSOCV was used. This evaluation method ensures a high 
generalization performance on unseen data and prevents 
overfitting [25]. To get rid of a possible overfitting during 
feature selection an independent test set will be evaluated in a 
further study. 

One important issue to note was the missing sex match 
between both groups. Significantly more male subjects were 
in patient group compared to healthy controls. The gender 
dependent movement differences could lead here to a bias in 
the results. Other studies showed that these results are similar 
for age and sex matched groups for gait and hand motor 
function individually [3, 7, 12]. 

Results of this and past studies [13, 17] are very promising 
for the sensor-based analysis in movement disorders. These 
concepts will bring excellent tools to support physicians and 
improve clinical care.  

V. OUTLOOK 

Future classification experiments will aim to differentiate 
between mild, intermediate and severe disease stages. A large 
set of patient and control data will be used to do an individual 
assessment for early diagnosis and disease monitoring. The 
goal is to build up a system for an immediate rating of the 
movement impairment. Therefore a recording of more patient 
and control data is needed to get age and sex matched groups.  
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