
  

  

Abstract—In this paper we introduce Audible Vision, a 
system that can help blind and visually impaired users 
navigate in large indoor open spaces. The system uses 
computer vision to estimate the location and orientation of the 
user, and enables the user to perceive his/her relative position 
to a landmark through 3D audio. Testing shows that Audible 
Vision can work reliably in real-life ever-changing 
environment crowded with people.  

I. INTRODUCTION 

The World Health Organization (2010) reported that 
globally the number of people of all ages visually impaired is 
estimated to be 285 million, of whom 39 million are blind [1]. 
Difficulties of moving freely and independently, especially in 
unfamiliar environments without blind accessibility design, is 
one of the major hurdles that they encounter to lead an 
independent life and fully integrate into the society. 
Navigation in large indoor open spaces, e.g. lobby areas of a 
building, public transit stations, shopping malls, is 
particularly challenging for the blind and visually impaired 
population. They must learn to rely on sensory cues from the 
environment such as tactile, auditory, perception of air 
currents, light sources, etc. to facilitate orientation while 
moving through open space from a landmark to another. They 
also need to remember the layout of the environment, 
constantly trying to maintain a satisfactory straight line of 
travel, judge the approximation of distance travelled, locate 
and keep track of various landmarks they have past, and 
back-trace to the last known location when they become 
disoriented. It is a difficult and prolonged process for the 
blind and visually impaired users to learn to navigate 
independently in an unfamiliar open space environment, even 
with the help of experienced Orientation and Mobility 
instructors. 

Large open spaces are also challenging for various 
navigation aid systems that have been developed to help the 
blind and visually impaired. The user's location and 
orientation need to be estimated with both high reliability and 
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accuracy. It is relatively easy for a person with normal vision 
to verify his location estimate given by a mapping application. 
But this is not the case for the blind and visually impaired 
users. Even occasional failures of localization and resulting 
erroneous navigation instructions can cause serious 
disorientation, and potentially danger to the user. Also, the 
blind and visually impaired rely heavily on various landmarks 
to navigate through an environment. Thus, it is not adequate 
to just locate the user to a zone level. More accurate location 
and orientation estimate are needed so that relative position of 
various nearby landmarks to the user can be calculated with 
high accuracy. GPS[2], WiFi[3], or active RFID[4] have been 
used in blind navigation applications. However, they can only 
reliably locate a user to zone level, and need other means to 
determine the orientation of the user. A compass is commonly 
used, but the estimation is subject to interference, and can be 
off tens of degrees. 

An alternative is to use passive RFID tags, and NFC 
devices that have very short range [5]. When the user touches 
and scans a tag, reliable and accurate user location and 
orientation can be determined assuming the user is facing the 
tag. But the user's location is only available when scanning 
the tag, and cannot be estimated at a distance from the tag. 
Visual tags have also been used to locate the blind using smart 
phones [6]. They can be detected in range, while providing 
accurate location and orientation of the blind person. Passive 
RFID and visual tags localization are suitable for  school and 
office buildings, where tags can be easily attached to doors 
along the hallway, and can be scanned by the user. But in 
open spaces,  it is challenging to find places to attach the tags 
densely,  and for the user to find and scan these tags. Also, the 
location of all these tags needs to be recorded and maintained 
in a database, increasing the deployment cost. 

 Localization using only visual features inherent in the 
environment without deploying visual tags is another 
emerging and appealing option. Current Smartphones with 
increasing processing power can run the computer vision 
localization algorithm locally [7]. Vision based localization 
can fail in locations lacking visual features, or repetitive 
features. They work best along with an alternative 
localization method that can locate the user to a zone level, 
and reduce the search space. 

As for user interfaces, current navigation aid systems 
typically give voice navigation instructions to the user once a 
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destination is chosen. Voice navigation instructions are very 
suitable for Manhattan-world style environments where 
instructions such as "turn left", "walk straight ahead" can be 
efficient  assuming that the user is aligned with a dominant 
axis of the world. In open spaces however, the voice 
navigation instructions can be less efficient in conveying the 
route information to the user. Also, it will be challenging for 
the user to follow the instructions exactly such as making 
perfect turns, or moving in straight lines. 3D audio has been 
used to enable the blind to interact with virtual environments, 
and has lots of potential to be used in real world navigation 
applications [8].   

In this paper we introduce Audible Vision, a system that 
uses computer vision to estimate the position and orientation 
of the user. It delivers the position of landmarks relative to the 
user through a 3D audio interface. Audible Vision does not 
provide routing and navigation function on its own, and is 
designed to complement and enhance existing indoor 
navigation systems in indoor open spaces by providing the 
following unique functions: 1) Seamlessly estimate the 
location and orientation of the user in open spaces with high 
reliability and accuracy, and 2) Alternative 3D audio based 
user interface that enables the user to sense the position of 
landmarks, and directs the user in non-Manhattan-world 
environments. 

The paper is organized as follows. Audible Vision 
components are introduced in the next section. A sample 
scenario is described in Section III and Section IV evaluates 
the performance of the vision based localization. Section V 
concludes the paper. 

II. SYSTEM COMPONENTS 

In this section, we describe the photo annotation mapping 
tool, the vision based localization algorithm, and the Android 
implementation of Audible Vision.  

A. Photo Annotation Mapping Tool 
We first extract the 3D structure of the environment from 

image sequences using motion software Bundler[9]. The 
outputs of the 3D reconstruction are the position and 
appearance descriptor of feature points in the environment. 
We use Surf features [10] during the 3D reconstruction as 
well as in the localization. We assume that the photos are 
taken with camera approximately up-right, and apply Surf 
without orientation invariance to increase its discriminative 
power. The Surf descriptors for the reconstructed 3D points 
are saved in a kd-tree structure for approximate nearest 
neighbor search in the localization phase[10]. After the 
reconstruction phase, the mapping tool will pick a set of 
photos that cover all feature points of the environment. The 
sighted user of the mapping tool can put annotations directly 
on the landmark in the photos, and the tool will automatically 
establish the correspondence between 3D feature points in the 
reconstruction and the landmark. The user can optionally 
mark out areas in photo areas from which feature points are 
not distinctive, or subject to frequent change, and thus not 
suitable for localization, e.g. floors and small furniture. Our 

mapping tool can use up-to-date new photos to incrementally 
update 3D feature points when new decorations or furniture 
are added.  

We perform reconstruction for individual confined areas, 
without explicit global registration, which simplifies the 
mapping process. We perform rotationally aligned local 3D 
construction with a global coordinate system, so that 
accelerometers and compass on the phone can be used to 
assist vision based location and orientation estimation. We do 
not further divide reconstruction of a confined area into 
Potentially Visible Sets, which would require knowledge 
about finer initial location and orientation of the user.  
B. Vision based Localization Algorithm 

Once we have the 3D reconstruction of an environment, we 
can locate the blind person using a photo taken by his 
smartphone. Existing approaches typically assume known 
camera intrinsic, and solve for full 6 Degrees of Freedom 
(DoF) camera location and orientation by first analytically 
solving for the depth of 3 feature correspondences as 3-point 
pose problem [11].  The approach works well in small rooms, 
or outdoors where features are spread across the y axis of the 
images. However, in large indoor open spaces with short 
ceilings, features crowded on the horizon, making the points 
and the camera almost co-planar. In this case, the solution of 
the 3-point pose problem is very sensitive to noisy 
measurements.  Iterative approaches that use more 
correspondence to solve for the projection matrix of the 
camera have similar issues, and need large number of 
RANSAC iterations when the proportion of outliers is high 
[12]. 
To circumvent these problems, we take advantages of the 
accelerometer and compass on the phone, and confine the 
localization problem to 2D. We assume a projective camera 
model, 
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where x  is the homogeneous coordinate of 2D interest points 
on the photo, X is the homogeneous coordinate of the 
corresponding 3D coordinates, K is the known intrinsic 
matrix of the camera, R is the rotation matrix of the camera, 
and T  is the position of the camera.  
The accelerometer on the phone is very accurate when the 
user is holding the camera still, while the compass can still be 
off tens of degrees depending on the magnetic sources nearby. 
Therefore, given the rotation matrix estimate sR from sensors 

on the phone, we can approximate '
sR R  as a degenerated 

rotation matrix in 2D, rotating only along z axis, having the 
following form 
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where θ is the difference between the heading given by the 
compass and the actual heading of the camera. 
We can than transform the coordinates of the feature points in 
the image into virtual measurements, 
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As measurements along z axis are crowded on the horizon, 
and are very sensitive to residual camera tilt,  we only uses 
measurements along x and y axis. The resulting 2D 
localization problem can be solved using the following 
constraints, 
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Three points correspondence are still needed to solve for x 
and y coordinates of the camera, and the compass estimation 
error. Alternatively, we keep θ  constant, and solve for 
location using two points correspondence, which is less 
complex and takes advantage of initial heading estimation by 
the compass. We search within the window of the maximum 
compass error, and use θ and location estimate combination 
that has most number of inliers as the final estimate. 

As point correspondence are subject to error, RANSAC 
scheme is often used to find hypothesis with most inliers. As 
we are estimating user localization in 2D as opposed to 6 DoF 
estimation of camera position, we can afford to directly 
remove outliers in the solution space, and thus avoid running 
verification step of RANSAC that need to iterate through all 
point correspondences for each hypothesis. We first use 
different point correspondences combinations to generate 
user location hypothesis. Location estimates from correct 
correspondence fall in a small area, while estimates from 
incorrect correspondence will spread across the entire  space. 
Thus, we first divide the 2D space into grids, and find the grid 
with most votes. With this initial estimate, we use mean-shift 
algorithm to find the mode of the location estimate 
distribution [13]. Using the spread of the location estimate 
hypothesis around the mode, we can get a reliable estimate. 

C. Android Implementation 
We implemented the Audible Vision system on the 

Android platform. The implementation includes the 
following modules: Map Management, Sensor Management, 
Camera Localization and 3D audio User Interface. 

Map Management module: It loads 3D feature point clouds 
saved in kd-tree and landmark information into the memory, 
given the user's approximate location. The user's approximate 
location can be entered by the user when he/she enter the 
building, or scan a RFID tag located at the building entrance. 
The map files range from 500KB to 5MB, and can be 
pre-downloaded into the phone, or pulled from a server 
dynamically.  

Sensor Management module: it estimates the camera 
rotation using the phone accelerometers and magnetic field 
sensor. The magnetic field strength is monitored to detect the 
presence of metal sources that interfere with the compass. 

This enables the Camera Localization model to adaptively 
adjust the orientation search window size based on the 
accuracy of the compass. Also, we use the gyroscope on the 
phone to track the rotation of the phone after a photo is taken, 
so that the user can pan the phone around to better perceive 
the relative position of the landmarks. The rotation of the 
phone is constantly updated and fed into the 3D audio module 
so that the user can pan the phone around for better perception 
of the relative orientations of the different landmarks. 

Camera Localization module: it takes photos, extracts Surf 
features, and uses the initial camera rotation estimate from 
sensors to estimate the user orientation and location in 2D. 
The 2D estimate is combined with the initial camera 
orientation estimate and approximate user height to generate 
the final 6 DoF pos estimate.  

3D Audio module: it updates the initial camera pos estimate 
obtained by the Camera Localization model with rotation 
from gyro. Then, the relative positions of the landmarks are 
calculated. The 3D audio module can cycle through all 
landmarks within a certain range from the user, and plays 
back in 3D audio: "landmark X in Y clock direction Z feet 
away". Repetitive sound patterns, e.g.,   We use 
soft-OPENAL port on Android to generate stereo 3D audio 
from mono sources. The OPENAL uses Head-related transfer 
function so that the user can perceive full 3D direction and 
approximate his/her distance of the landmark from 3D stereo 
audio played back from a headphone. The user can select a 
particular landmark by turning to it, and receive further route 
information from separate navigation applications.  

III. EVALUATION 

To evaluate the performance of the vision based localization 
and orientation estimation, we conducted experiments in a 
large open area in the lobby of Umass campus center which 
spans 150 feet by 50 feet. We took 266 photos on weekends 
when there are less people in the area for 3D reconstruction, 
while we test the system on a busy weekday with 91 photos 
using the back camera of Samsung Nexus Android phone 
with 35mm equivalent focal length. We used more photos for 
reconstruction to create enough overlapped areas between the 
photos. 1280x960 photos are used for reconstruction, while 
640x480 photos are used for localization. Some photos of the 
landmarks in the calibration set and test set are shown in 
Figure 1. The top row includes photos from the calibration set, 
and the bottom row displays the test set with landmark 
positions estimated by the system superimposed on the photo. 
Landmarks are marked with red circles, with diameter 
indicating distance, the larger the circle, the closer the 
distance. Clock position and distance relative to the 
landmarks are also listed numerically. As we can see, the 
testing scenario is very challenging as the environment has 
changed a lot. The area is quite crowded with people, which 
occlude significant areas of the test photos. There are cases in 
which the software recognizes that it can not identify the 
landmarks (i.e., not enough features in the photo), in which 
case the photos are rejected and the user is asked to take 
additional photos. In cases the software finds enough features 
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in a photo, the photo is accepted. The metric of interest is the 
ratio between the number of accepted photos in which the 
landmark direction relative to the user was correctly 
identified and the total number of accepted photos. 
    Of 91 test photos taken, the system rejected 46 photos due 
to lack of visual features which can occur when the camera is 
pointing close up to a featureless area, or when there is too 
much motion blur. In cases where the photos are rejected, the 
user is informed and asked to take additional photos. For the 
45 photos that were accepted we evaluate the angular 
accuracy of the relative landmark positions estimated by the 
system. All landmarks further than 10 feet away from the user 
within 39 of the 45 photos are estimated within 15± degrees 
accuracy. Location estimates are completely off in the 
remaining 6 photos. To further improve the reliability of the 
system, multiple photos toward different directions can be 
taken in the same location. The localization took 3-10 
seconds on one photo depending on the number of features 
extracted. The majority of time is spent in feature extraction 
and feature matching. 

IV. CONCLUSION 

We introduced the Audible Vision system that can help blind 
and visually impaired users navigate in large indoor open 
spaces. The system uses computer vision to estimate the 
location and orientation of the user, and enables the user to 
perceive his/her relative position to a landmark through 3D 
audio. Preliminary testing results show that for landmarks 
located at least 10 feet away from the user in crowded spaces, 
the landmarks are estimated within 15 degrees accuracy in 86% 
of the cases.  
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Figure 1. Calibration (top row) and test (bottom row) photos of landmark
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