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Abstract— Results are presented for measuring the gait 

parameters of walking speed, stride time, and stride length of 

five older adults continuously, in their homes, over a four 

month period. The gait parameters were measured passively, 

using an inexpensive, environmentally mounted depth camera, 

the Microsoft Kinect. Research has indicated the importance of 

measuring a person’s gait for a variety of purposes from fall 

risk assessment to early detection of health problems such as 

cognitive impairment. However, such assessments are often 

done infrequently and most current technologies are not 

suitable for continuous, long term use. For this work, a single 

Microsoft Kinect sensor was deployed in four apartments, 

containing a total of five residents. A methodology for 

generating trends in walking speed, stride time, and stride 

length based on data from identified walking sequences in the 

home is presented, along with trend estimates for the five 

participants who were monitored for this work.  

I. INTRODUCTION 

ESEARCH has shown that the parameters which describe 

locomotion are indispensible in the diagnosis of frailty 

and fall risk [1] and that the measurement of a person’s 

gait is of importance to a variety of health conditions [2]. 

Clinical research has indicated that changes in gait 

parameters such as walking speed may precede cognitive 

impairment [3], and that variability in stride parameters may 

be predictive of future falls in older adults [4-5].  These 

studies are just a small subset of the research indicating the 

importance of measuring gait parameters. 

 Given these findings, it would seem that regular, frequent 

measurement of gait would be a common practice. However, 

current technologies for gait measurement, such as timing 

with a stop watch or evaluation in a performance lab, often 

lead to infrequent assessments which may not be 

representative of a person’s true ability [6]. Thus, 

inexpensive systems which can continually monitor gait in 

typical real-world settings, such as the home, would greatly 

facility the use of gait information in clinical care. 

 A variety of technologies are being developed and 

investigated to address this need. Wearable devices for 

measuring gait, in addition to other physical measures of 

performance, based on accelerometers and/or gyroscopes are 

an area that has received significant attention. Although it 

has been shown that measures derived from body-worn 
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sensors are useful in a variety of contexts [7], including fall 

risk assessment, feedback from older adults indicates that 

many consider them to be invasive or inconvenient [8]. 

Ultimately, more investigation is needed to assess the 

usability and reliability of these devices as a continuous, 

long-term monitoring tool. 

 In [6], researchers were able to demonstrate the benefits 

of a passive, in-home gait monitoring system that uses an 

array of passive infrared (PIR) motion sensors to capture 

walking speed. These benefits included showing that in-

home walking speed was associated with several 

neuropsychological and motor performance tests. However, 

such systems are not capable of the fine grained 

measurements necessary to capture parameters such as stride 

time and stride length which could be necessary for tasks 

such as early illness detection, or in-home fall risk 

assessment. 

 Vision-based monitoring systems offer a potential 

solution which addresses both the need for fine-grained, 

detailed measurements and the need for passive, 

environmentally mounted hardware that does not require 

those being monitored to wear any devices or worry about 

changing batteries, etc. Furthermore, research has indicated 

that privacy concerns older adults may have to vision-based 

monitoring systems can be addressed through the use of 

privacy preserving processing techniques [9]. 

 Recently, Microsoft released the Kinect sensor to allow 

controller free game play on its Xbox system [10]. The 

sensor, which utilizes a pattern of actively emitted infrared 

light and an infrared sensitive camera, is capable of 

generating a depth image (an image in which the value of 

each pixel depends on the distance to what is being viewed) 

independent of visible lighting. This yields a three-

dimensional (3D) view of the world, day or night, using a 

single low-cost device. Earlier work investigating the Kinect 

for passive gait measurement in home environments has 

shown the potential of this sensing platform [11-12]. 

 This paper presents initial results of capturing trends in 

three habitual, in-home gait parameters for five residents 

living in four different apartments using the Microsoft 

Kinect sensor. First, Section II presents a brief overview of 

the system deployed in the four apartments, which are part 

of an independent living facility for older adults, and 

provides a quick summary of previous work conducted to 

validate the approach. Section III describes the framework 

for analyzing the data collected in the apartments and 

generating trend estimates in the habitual, in-home gait 

parameters over a four month period. Finally, Section IV 

provides a brief discussion of the potential impact of the 

work, along with avenues for future investigation. 
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II. SYSTEM OVERVIEW 

In [11], the Microsoft Kinect sensor was evaluated for the 

purpose of passive, in-home gait measurement in a lab 

setting. The results of this evaluation showed good 

agreement between gait parameters obtained using the 

Kinect and those measured using a Vicon marker-based 

motion capture system. More recently, algorithms necessary 

for extending the earlier approach into dynamic real world 

environments were developed and initial in-home gait 

measurement results were presented [12]. Furthermore, the 

impact of visitor walks was found to be negligible. A brief 

overview of the system is given below. 

The system consists of a single Microsoft Kinect sensor 

and a computer. For this work, the Kinect has been mounted 

on a small shelf near the ceiling above the front door of the 

apartment being monitored and the computer has been 

placed in a cabinet above the refrigerator. This arrangement 

is shown in Figure 1 (a) and is used in all the apartments in 

this study. This arrangement helps minimize the 

intrusiveness of the system, as the cabinet hides the 

computer from view and the Kinect is kept out of the way by 

mounting it near the ceiling.  

Due to the placement of the Kinect near the ceiling (which 

has a height of 9 feet), along with the need for a large 

operating range (greater than 6 meters) in order to capture 

walks in the apartments, skeletal tracking is not used. 

Instead, a dynamic background modeling algorithm allows 

for extraction of foreground objects through background 

subtraction using only the depth imagery from the Kinect. 

The three-dimensional (3D) point clouds of these foreground 

objects, formed using the known intrinsic and extrinsic 

parameters of the Kinect, are then tracked over time. This 

process is illustrated in Figure 1 (b-d). Only objects which 

meet a size threshold are tracked by the system. 

Identification of walking sequences happens online, in 

real time, at 15 frames per second, using the histories of the 

tracked objects. A set of criteria based on speed, length, 

duration, and straightness is used to differentiate walks from 

other movements, as well as eliminate curved walks which 

would contain erroneous estimates for the gait parameters. A 

state machine diagram documenting the walk identification 

algorithm is shown in Fig. 2. In order to minimize the impact 

of capturing the beginning or end of a walk on the estimated 

speed, only the middle half of a walk is used in the 

computation of walking speed. Given the 3D point cloud of 

a person for each frame in a walking sequence, steps are 

extracted, and stride parameters estimated, from the time 

series of the correlation coefficient obtained from the 

normalized ground plane projections of the 3D point cloud. 

This is shown in Figure 1 (e); see [11] for details. 

Finally, stride parameters cannot be extracted for every 

identified walk due to issues such as occlusion, segmentation 

problems, etc., and walks with less than six steps are often 

problematic for use in estimating stride parameters. Thus, 

stride time and stride length are only computed for walking 

sequences for which at least six valid steps can be identified. 

Fig. 1 (a) Kinect system and computer as deployed in apartments. (b) 

Example depth images from a Kinect during a walking sequence. (c) 

Extracted foreground corresponding to the depth images. (d) Three-
dimensional model of person obtained using foreground and calibration 

parameters. (e) Plot of correlation coefficient time series of normalized 

ground plane projections during a walking sequence; used to identify when 
steps occur. Local maxima correspond to left steps, while local minima 

correspond to right steps (see [11] for details). 
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Figure 2: State machine diagram of the walk identification algorithm. The 

values Ts, Td, and Tt are thresholds for speed, distance, and time, 

respectively. These thresholds, along with a straightness criterion, are used 

to determine the minimum characteristics of walks that are saved. For this 

work, threshold values were: Ts = 5 in/sec, Td = 48 in, Tt = 1.0 sec. 
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III. IN-HOME GAIT PARAMETER TRENDS 

Each walk identified in an apartment has either a two (2D) 

or four (4D) dimensional feature vector associated with it 

depending on whether stride parameters could be extracted. 

In both cases, the first two dimensions are the height of the 

person during the walk, as well as the speed of the walk. In 

the 4D case, the last two dimensions are the average stride 

time and stride length for the walk. Thus, each walk, w, is 

represented as follows: 

 

     
                             
                        

  

 

where h, s, st, and sl, stand for height, walking speed, stride 

time, and stride length respectively. 

In order to estimate values for habitual in-home walking 

speed, stride time, and stride length, all the walks from a 

given time period (for this work three weeks) are grouped 

together and a mode finding algorithm, based on Mean Shift, 

is used to select a mode in the data which represents the 

resident. The mode finding is done at a variety of scales, 

using both the 2D and 4D data simultaneously. The optimal 

mode is selected based on a criterion that trades off how 

much of the data is represented by the mode against how 

compact that set of the data is. In the case of two resident 

apartments, the algorithm looks for two modes in the data 

and the criterion function is adjusted, slightly, to favor 

modes of roughly equal size. Prior work, using a set of 

labeled ground truth, indicated that such estimates are not 

significantly affected by visitor walks [12].  

By moving the three week period of interest and re-

running the mode finding algorithm, values for the habitual 

in-home gait parameters can be estimated for varying points 

in time. This process is illustrated, in Figure 3, for a set of 

four apartments containing a total of five residents. The ages 

of the residents ranged from 75 to 88, and three were male. 

The first row of Figure 3 corresponds to the three week time 

period of Nov. 1, 2011, thru Nov. 21, 2011, and shows 

scatter plots of the first two dimensions of the walks 

indentified in the different apartments during this time 

window (shown as blue and green dots), along with the 

optimal modes found to represent the residents of the 

apartments (shown as red circles). The second row 

corresponds to the time period Dec. 21, 2011 thru Jan. 10, 

2012. Finally, the third row corresponds to the time period 

Feb.  9, 2012, thru Feb. 29, 2012. (Note that although Figure 

3 shows two dimensions, the mode finding is done in 4D.) 

In order to capture trends in the parameters for each 

resident, a sliding window approach was applied with a 

window size equal to three weeks and a step size equal to 

one day. Results for each resident in the four apartments 

over a four month period from Nov. 1, 2011, thru Feb. 29, 

2012, are shown in Figure 4. The results have been filtered 

slightly to reduce noise. The total number of walks identified 

(a) 

(b) 

(c) 

Fig. 3. Scatter plots of the first two dimensions (height and walking speed) of all walks identified in each of four apartments during different three 

week windows over a four month period. The blue dots represent walks for which only two dimensions are available, while green dots represent 
walks for which four dimensions are available. The large red dots indicate the modes found to represent the residents of the apartments.  (a) Nov. 1, 

2011 thru Nov. 21, 2011. (b) Dec. 21, 2011, thru Jan. 10, 2012. (c) Feb. 9, 2012, thru Feb. 29, 2012.  

APARTMENT 1 APARTMENT 2 APARTMENT 3 APARTMENT 4 
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in the apartments during this four month period ranged from 

7,199 in Apartment 1, to 27,016 in Apartment 4. 

As Figure 4 shows, the trend lines for the residents appear 

relatively stable. However, there are some noticeable 

changes. In Apartment 2, the resident’s walking speed 

appears to increase along with his stride length, while his 

stride time decreases. In Apartment 3, the resident’s velocity 

seems to increase while her stride time decreases. 

Interestingly, the resident of Apartment 3 underwent femur 

surgery approximately two months prior to this time period 

and was recovering. Finally, in the case of Apartment 4, the 

walking speed and stride length of Resident 1 appears to 

slow over the four month period while stride time is stable. 

IV.  DISCUSSION 

Kinect based monitoring systems were able to passively 

and unobtrusively monitor the habitual, in-home gait 

parameters of five residents in four apartments on a 

continuous basis over a four month period. An analysis 

based on a mode finding algorithm combined with a sliding 

window approach was able to capture trends in these 

parameters. Such systems could be invaluable for a variety 

of purposes from in-home fall risk assessment, to early 

detection of health problems, to improved monitoring of 

patients during rehabilitation. Future efforts will focus on 

further evaluating the potential benefits of this technology, 

as well as refining the algorithms for analyzing the data. 

ACKNOWLEDGMENT 

The authors would like to acknowledge the members of 

the Eldertech team at the University of Missouri for their 

help in installing the systems used in this work.  

REFERENCES 

[1] M. Runge and G. Hunter, “Determinants of musculoskeletal frailty 

and the risk of falls in old age,” Journal of Musculoskeletal and 
Neuronal Interactions, 6 (2006), 167–173. 

[2] D. Hodgins, “The Importance of Measuring Human Gait,” Medical 
Device Technology, vol. 19, pp. 42-47, Sep. 2008. 

[3] R. Camicioli, D. Howieson, B. Oken, G. Sexton and J. Kaye, “Motor 

slowing precedes cognitive impairment in the oldest old,” Neurology 
50 (1998), 1496–1498. 

[4] JM Hausdorff, DA Rios, HK Edelberg, Gait variability and fall risk in 

community-living older adults: a 1-year prospective study, Arch Phys 
Med Rehabil, 2001;82:1050–6.  

[5] Y. Barak et al., "Gait Characteristics of Elderly People with a History 

of Falls: A Dynamic Approach," Physical Therapy, 86, 11. 1501-1510 
(2006).  

[6] J. Kaye, N. Mattek, H. Dodge, T. Buracchio, D. Austin, S. Hagler, M. 

Pavel, and T. Hayes, “One walk a year to 1000 within a year: 
Continous in-home unobtrusive gait assessment of older adults,” Gait 

and Posture, 35(2), pp. 197-202, 2012. 

[7] B. R. Greene, A. O’Donovan, R. Romero-Ortuno, L. Cogan, C. N. 
Scanaill, and R. A. Kenny, “Quantitative Falls Risk Assessment Using 

the Timed Up and Go Test,” IEEE Trans. on Biomedical Engineering, 

vol. 57, no. 12, Dec., 2010, pp. 2918-2926. 
[8] Demiris G, Rantz MJ, Aud MA, Marek KD, Tyrer HW, Skubic M & 

Hussam AA, "Older Adults' Attitudes Towards and Perceptions of 

'Smarthome' Technologies: a Pilot Study," Medical Informatics and 

The Internet in Medicine, June, 2004, vol. 29, no. 2, pp. 87-94.  

[9] G. Demiris, O. D. Parker, J. Giger, M. Skubic, and M. Rantz, “Older 

adults' privacy considerations for vision based recognition methods of 
eldercare applications,” Technology and Health Care, vol. 17, pp. 41-

48, 2009.  

[10] OpenKinect. http://openkinect.org 
[11] E. Stone and M. Skubic, "Evaluation of an Inexpensive Depth Camera 

for In-Home Gait Assessment," Journal of Ambient Intelligence and 

Smart Environments, 3(4):349-361, 2011. 
[12] E. Stone and M. Skubic, “Passive, In-Home Gait Measurement Using 

an Inexpensive Depth Camera: Initial Results,” In 6th ICST 

Conference on Pervasive Computing Technologies for Healthcare, 
San Diego, CA, May 21-24, 2012. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 4. Trends for the habitual, in-home gait parameters of walking speed, 

stride time, and stride length for five residents of four apartments computed 
using data from a four month period, Nov. 1, 2011, thru Feb. 29, 2012. The 

scale on the left applies to walking speed and stride length; while the scale 

on the right applies to stride time. 

APARTMENT 1 – RESIDENT 1 

APARTMENT 2 – RESIDENT 1 

APARTMENT 3 – RESIDENT 1 

APARTMENT 4 – RESIDENT 1 

APARTMENT 4 – RESIDENT 2 
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