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Abstract— Only a minority of patients undergoing in-patient
surgical procedures experience complications. However, the
large number of in-patient surgeries (over 48 million procedures
each year in the U.S.) results in substantial overall mortality
and morbidity due to these complications. This burden can
be decreased through improvements in the ability to evaluate
patients by the bedside, and to assess surgical quality and out-
comes across hospitals. Unfortunately, the process of developing
clinical models for surgical complications is made challenging
by the availability of generally small datasets for model training,
and by class imbalance due to the diminished prevalence of
many important complications. In this paper, we address this
issue and explore the idea of jointly leveraging the benefits of
both supervised and unsupervised learning to model surgical
complications that occur infrequently. In particular, we study an
approach where the problems of supervised and unsupervised
model development are treated as tasks that can be transferred.
Focussing this work on support vector machine (SVM) classifi-
cation, we describe a transfer learning algorithm that improves
performance relative to both supervised (i.e., binary or 2-class
SVM) and unsupervised (i.e., 1-class SVM) methods, as well
as the use of cost-sensitive weighting techniques, for predicting
different surgical complications within the American College
of Surgeons National Surgical Quality Improvement Program
registry.

I. INTRODUCTION

Surgical models that can accurately discriminate between
patients at high or low risk of complications following in-
patient procedures are an important resource in reducing
the mortality and morbidity associated with surgery. These
models are valuable clinical tools in evaluating patients by
the bedside, as well as to assess quality and outcomes across
hospitals. However, predicting surgical complications has
traditionally represented a challenging proposition, with no
satisfactory predictors for many adverse clinical outcomes.

The challenges of developing models for surgical com-
plications usually stem from existing datasets available for
model derivation being small (e.g., thousands to tens of
thousands of patients) and suffering from class imbalance.
Traditionally, models to stratify surgical patients have been
developed within a supervised learning framework. However,
supervised learning approaches focus on characterizing the
differences between patients who do or do not experience
clinical events, and suffer from the lack of sufficient positive
(i.e., event) examples for model training when clinical events
occur with diminished prevalence. For example, the rate of
a wide range of serious complications, ranging from coma
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to bleeding requiring transfusion was well below 1% in the
American College of Surgeons National Surgical Quality
Improvement Program (NSQIP) data sampled at over 200
hospital sites [1]. Collecting additional data to address this
issue of class imbalance during model training is often in-
feasible because of delays and expenses to both patients and
caregivers. The costs and complexity of collecting extensive
data annotated by experts have impeded the spread of well
validated and effective healthcare quality interventions [2].

There is a growing body of recent work [3], [4] focusing
on addressing these issues in the context of unsupervised
learning. In the presence of small datasets with few positive
examples, these efforts evaluate patients by learning the
support of the available data, and by comparing the clinical
characteristics of new patients to the distribution of existing
patient records. In studies on different clinical applications,
these approaches successfully discriminate patients at in-
creased or decreased risk of clinical events. While these
results are promising, however, in general the unsupervised
learning approaches do not consistently improve performance
relative to models developed through supervised learning.

In this study, we build upon these earlier results using
unsupervised learning while developing models for surgical
complications. We note that a limitation of earlier work
on unsupervised learning in medicine is that it does not
exploit any of the information available in labeled examples.
While the absence of a large number of positive examples
makes it difficult for supervised models to generalize, we
nevertheless believe that there may be useful information in
the patient labels beyond the support of these patients in
the feature space that can be exploited. Most notably, a key
limitation of unsupervised algorithms is that paradoxically
they consider both the healthiest and unhealthiest individuals
in a population as being at highest risk (since these examples
are most likely to manifest as tails of the patient-population
distribution). By using label information for patients, we
believe that it may be possible to encode the directionality
of these tails for surgical evaluation.

We exploit this observation and explore the idea of jointly
leveraging the benefits of both supervised and unsupervised
risk stratification of patients undergoing surgery. We do so by
adopting an approach that can be considered as a specialized
case of transfer learning. Transfer learning [5] is typically
used to address situations where the data for model training
and model application are drawn from different distributions.
In such cases, transfer learning provides a way to refine a
model between training and application. In our work, we
adopt a different use of transfer learning: instead of using
transfer learning to refine a model across datasets, we use the
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same underlying principles to refine a model developed using
supervised learning for use in unsupervised learning (and
vice versa). In this way, our approach uses transfer learning
to refine a model across tasks or problem formulations rather
than datasets while modeling surgical complications.

Popular approaches for transfer learning include instance-
based, feature-based, and parameter-based algorithms [5].
In instance-based transfer learning, the goal is to address
the issue of training and test distribution differences by
reweighting data in the source domain for use in target
domain. Feature-based transfer learning finds a good feature
representation that is common to both source and target do-
mains. Since both instance-based and feature-based transfer
learning are essentially focused on the situation of refining
a model between datasets, they are not relevant to our work.
Instead, the approach of parameter-based transfer learning,
which focuses on transferring parameters between similar
but distinct tasks is most relevant to the clinical problem
considered here. We explore this idea in our work, and: (i)
introduce the idea of combining the merits of both supervised
and unsupervised learning for clinical risk stratification; (ii)
propose a formulation that exploits this idea by describing a
transfer learning-based algorithm that leverages information
in both supervised and unsupervised tasks; (iii) evaluate our
ideas and the use of our SVM-based algorithm in a rigorous
investigation on a real-world population of surgical patients;
and (iv) describe the strengths and limitations of our research
as a means of informing future research.

II. BACKGROUND

We position our work on modeling surgical complications
within the framework of support vector machine (SVM)
classification, and here we present a background description
of the 2-class and 1-class SVM.

A. 2-Class Support Vector Machine Classification
Binary or 2-class SVM [6] focuses on learning a hyperplane
in a high-dimensional feature space that can be used for
classification. Given a training set {(xi, yi)|xi ∈ Rm, yi ∈
{+1,−1}}ni=1 the soft margin SVM formulation aims to
solve the following constrained optimization problem:

min
w,ξ

1

2
||w||2 + C

n∑
i=1

ξi

s.t. yi(w
Tφ(xi)− b) ≥ 1− ξi ∀i = 1, . . . , n

ξi ≥ 0

where φ is a kernel function that maps data into some feature
space, and the constant C reflects the cost of misclassification
and the ξi correspond to the slack variables of the soft margin
SVM. The dual form of the problem is given by:

min
α

1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(i, j)−
n∑
i=1

αi

s.t. 0 ≤ αi ≤ C ∀i = 1, . . . , n
n∑
i=1

αiyi = 0

where K(i, j) = φ(xi)
Tφ(xj) is the kernel matrix [7]. The

final classification rule for predicting the label of a new
example x is then given by ŷ = sgn(w∗ · φ(x) − b), and
w∗ =

∑n
i=1 αiyiφ(xi) can be obtained by solving the dual

formulation.

B. 1-Class Support Vector Machine Classification

The 1-class SVM [8] aims to estimate the support S of
a high-dimensional distribution such that the probability
that a point drawn from the input space lies outside S
is low. Roughly speaking, in contrast to the 2-class SVM
algorithm, which separates two classes in the feature space
by a hyperplane, the 1-class SVM attempts to separate the
entire dataset from the origin. Given training data of the
form {(xi)|xi ∈ Rd}ni=1 (i.e., with the class labels either not
available or ignored for training in an unsupervised setting),
the 1-class SVM solves the following quadratic problem
(which penalizes feature vectors not separated from the
origin, while simultaneously trying to maximize the distance
of this hyperplane from the origin):

min
w,ψ,ρ

1

2
||w||2 − ρ+ C

n∑
i=1

ψi

s.t. wTφ(xi)− ρ ≥ (−ψi) ∀i = 1, . . . , n

ψi ≥ 0

where the constant C expresses the tradeoff between incor-
porating outliers that are not separated from the origin and
minimizing the support region. The dual form of the 1-class
SVM problem is:

min
α

n∑
i=1

n∑
j=1

αiαjK(i, j)

s.t. 0 ≤ αi ≤ C ∀i = 1, . . . , n
n∑
i=1

αi = 1

The classification rule for predicting whether a new exam-
ple x lies within the region of high probability is then given
by ŷ = sgn(w∗ ·φ(x)−ρ) with ŷ ≤ 0 denoting the detection
of an outlier, and w∗ =

∑n
i=1 αiφ(xi) can be obtained by

solving the dual formulation.

III. METHOD

We propose a transfer learning extension to 2-class
and 1-class SVM classification. Given the training set
{(xi, yi)|xi ∈ Rd, yi ∈ {+1,−1}}ni=1, we first utilize 2-class
SVM classification for finding a maximum margin boundary
w∗

2. Our transfer learning formulation then transfers this
2-class boundary to the 1-class SVM task by solving the
following optimization problem:

min
w,ψ,ρ

1

2
||w −w∗

2||2 − ρ+ C

n∑
i=1

ψi

s.t. wTφ(xi)− ρ ≥ (−ψi) ∀i = 1, . . . , n

ψi ≥ 0
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This model regularizes the 1-class SVM solution w to-
wards the model parameter w∗

2 obtained from the 2-class
SVM classification task instead of regularizing w by itself. In
this setting, the regularization term C expresses the tradeoff
between slacks and the distance between the transferred
model and original model. The model learned will generally
be closer to the 2-class SVM task model parameter w∗

2 when
C has small values.

Similar to other SVM formulations, solving the dual of this
optimization problem is more convenient and provides the
advantage of using the kernel trick. In the interest of space,
we only present the dual formulation and omit the deriva-
tion process (which can be easily done by introducing the
Lagrangian). Also, since we already know from section II-A
that w∗

2 =
∑n
i=1 α

∗
i yiφ(xi), thus the dual form of the 2-to-1

SVM transfer problem can be written as:

min
α

n∑
i=1

n∑
j=1

αiαjK(i, j) +w∗
2

n∑
i=1

αiφ(xi)

=

n∑
i=1

n∑
j=1

αiαjK(i, j) +

n∑
i=1

n∑
j=1

αiα
∗
jyjK(i, j)

s.t. 0 ≤ αi ≤ C ∀i = 1, . . . , n
n∑

i=1

αi = 1

The transfer learning algorithm can also be applied to first
find the one-class SVM boundary w∗

1, and then transfer it
using 2-class SVM. The primal formulation is given here:

min
w,ξ

1

2
||w −w∗

1||2 + C

n∑
i=1

ξi

s.t. yi(w
Txi − b) ≥ 1− ξi ∀i = 1, . . . , n

ξi ≥ 0

We omit the interpretation here since it follows naturally
from the previous discussion when transferring from two-
class SVM to one-class SVM. Since we already know from
section II-B that w∗

1 =
∑n
i=1 α

∗
i φ(xi), the dual form of the

1-to-2 SVM transfer problem is given by:

min
α

1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(i, j) +w∗
1

n∑
i=1

αiyiφ(xi)−
n∑

i=1

αi

=
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(i, j) +

n∑
i=1

αi

( n∑
j=1

α∗
jyiK(i, j)− 1

)
s.t. 0 ≤ αi ≤ C ∀i = 1, . . . , n

n∑
i=1

αiyi = 0

IV. EVALUATION METHODOLOGY

A. Data

Our dataset comprised records from the American College
of Surgery National Surgical Quality Improvements Program

(ACS-NSQIP) for patients undergoing surgery from 2005-
2008 [1]. This data was used to develop models for each of
the ten morbidity outcomes with lowest prevalence within
30 days of in-patient surgery (coma > 24 hours, peripheral
nerve injury, myocardial infarction, stroke or cerebrovascular
accident, pulmonary embolism, failure of extracardiac graft
or prosthesis, renal insufficiency, cardiac arrest, renal failure,
and bleeding requiring transfusion). After removal of cases
with missing covariates, 27,673 patients data from year
2007 were used for training and 21,204 patients data from
year 2005-2006 were used for internal selection of model
parameters during derivation. NSQIP data for 2008 was used
to test models on 35,657 patients.

B. Evaluation

For a given SVM model, each patient was assigned a score
defined as the distance of the patient’s feature vector from
the decision boundary. We assessed the predictive ability of
the SVM models by calculating the area under the receiver
operating characteristic curve (AUROC) for the test patient
scores relative to the different endpoints. Our choice of the
AUROC as an evaluation metric is based on its widespread
use to assess risk stratification models [9].

All algorithms were implemented using the MOSEK opti-
mization toolbox for Matlab. Each model was trained using
a linear kernel with cost parameters chosen by testing on
the validation data from the set {C = 2a|a ∈ [−10, 10]}.
In addition to comparing the transferred SVM approaches
to 2-class and 1-class SVM models, we also compared it to
another popular approach that augments 2-class SVM model
to address the class-imbalance issue [6]. In this method, the
cost parameters were chosen to assign a weight to positive
examples that was inversely proportional to how rarely they
occurred in the data.

V. RESULTS

Table I presents two sets of comparisons. First, the last two
columns of Table I compare the AUROC values obtained for
the different surgical complications when transferring from
1-class to 2-class, and when transferring from 2-class to 1-
class. For some endpoints, transferring from 1-class to 2-
class outperformed the other approach, and vice versa for
other endpoints. We note that this variation was not depen-
dent on any obvious statistical property of the data (e.g.,
prevalence of complications). However, the improvement
between the 1-to-2 or 2-to-1 transfer cases was consistent and
could be identified within the training cohort in all cases. We
therefore also consider an integrated model that is based on
using the best of the 1-to-2 and 2-to-1 models (determined
during training). Data for this approach is presented in
Table I in the ’Combined transfer’ column (third from the
left).

The second comparison in Table I is between the transfer
learning approaches and logistic regression (commonly used
in clinical decision making and denoted by LR) [10], 1-class
SVM, 2-class SVM, and 2-class SVM classification with
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TABLE I
COMPARISON OF LOGISTIC REGRESSION, 1-CLASS SVM, 2-CLASS SVM, 2-CLASS SVM WITH RE-WEIGHTING, TRANSFERING FROM 1-CLASS TO

2-CLASS, TRANSFERING FROM 2-CLASS TO 1-CLASS, AND ALSO THE COMBINED TRANSFER MODEL AUROC VALUES FOR DIFFERENT ADVERSE

OUTCOMES FROM THE NSQIP DATASET.

Endpoint Occurrence LR 1-class 2-Class 2-Class Combined 1 to 2 2 to 1
in Test Set SVM SVM SVM-W transfer transfer transfer

Coma 28 (0.1%) 0.615 0.700 0.601 0.560 0.759 0.601 0.759
Nerve Injury 56 (0.2%) 0.546 0.643 0.54 0.558 0.663 0.539 0.663
Myocardial Infarction 96 (0.3%) 0.746 0.694 0.741 0.729 0.774 0.774 0.709
Graft Failure 149 (0.4%) 0.772 0.704 0.770 0.748 0.781 0.781 0.705
Cerebrovascular Accident 173 (0.5%) 0.734 0.744 0.713 0.751 0.739 0.739 0.744
Pulmonary Embolism 223 (0.6%) 0.661 0.646 0.649 0.642 0.663 0.663 0.642
Renal Insufficiency 242 (0.7%) 0.731 0.732 0.703 0.733 0.744 0.703 0.744
Bleeding Event 284 (0.8%) 0.794 0.744 0.787 0.788 0.764 0.787 0.764
Cardiac Arrest 286 (0.8%) 0.805 0.777 0.783 0.802 0.805 0.783 0.805
Renal Failure 286 (0.8%) 0.831 0.773 0.807 0.821 0.812 0.812 0.791
Total Average 0.724 0.716 0.709 0.713 0.750 0.712 0.733

cost-sensitive weighting. Despite variations in the frequen-
cies of outcomes and the numbers of patients in the training
set, the combined transfer approach outperformed all the
other methods in 7 out of the total 10 endpoints of interests.
The total average AUROC was also higher for the transfer
approach (0.750) than for LR, 1-class SVM, 2-class SVM,
and 2-class SVM with cost-sensitive weighting (a maximum
AUROC of 0.724 for any of the other approaches).

VI. DISCUSSION

In this study, we address the need for clinical models to
stratify patients for surgical complications. We build upon
previous work suggesting that in the absence of enough
labeled training examples, an unsupervised learning approach
may have value in stratifying patients for surgical events.
Our research addresses an important potential limitation of
this work, and describes how a purely unsupervised learning
approach for developing clinical models can be improved
by exploiting supplementary information available through
supervised learning.

In this way, our approach resembles a transfer learning
formulation for the goal of modeling surgical complications,
with the unsupervised and supervised models framed as
similar but distinct tasks. We are careful to distinguish
our approach from transfer learning applications where the
source and target domain data belong to different distri-
butions. Instead, we propose using labeled and unlabeled
versions of the same data for model transfer. To achieve
this, we describe SVM-based algorithms that transfer the
parameter of one model to another.

When evaluated on data from over 30,000 patients un-
dergoing inpatient surgical procedures, our transfer SVM
algorithm generally achieved better discrimination of patients
at high risk of different morbidity outcomes than both 2-
class and 1-class SVM models. In addition, our approach
consistently outperformed 2-class SVM models where cost-
sensitive weighting is used to overcome class imbalance, as
well as the use of logistic regression.

We conclude with a brief discussion of some opportunities
for future research. First, we believe that the question of how

the relative merits of transferring from 1-class to 2-class and
vice versa change as the size of the training population and
the prevalence of adverse outcomes varies is an interesting
question that warrants further investigation. This information
may be valuable in guiding the choice of the approach best
suited for risk modeling in different clinical contexts (rather
than selecting the best model in a purely empirical manner
as was done in this study). Second, we propose exploring an
approach that integrates the cost-sensitive weighting method
for imbalanced learning with our transfer learning approach.
Finally, we believe that there is a need to evaluate the ideas
presented here in other clinical domains, and also relative
to a broader set of ideas for addressing the issue of class
imbalance. This may allow for a more complete appreciation
of the contributions of our study.
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