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Abstract— Extubation failure (EF) is an ongoing problem in 

the neonatal intensive care unit (NICU). Nearly 25% of 

neonates fail their first extubation attempt, requiring re-

intubations that are associated with risk factors and financial 

costs. We identified 179 mechanically ventilated neonatal 

patients that were intubated within 24 hours of birth in the 

MIMIC-II intensive care database. We analyzed data from the 

patients 2 hours prior to their first extubation attempt, and 

developed a prediction algorithm to distinguish patients whose 

extubation attempt was successful from those that had EF. 

From an initial list of 57 candidate features, our machine 

learning approach narrowed down to six features useful for 

building an EF prediction model: monocyte cell count, rapid 

shallow breathing index, fraction of inspired oxygen (FiO2), 

heart rate, PaO2/FiO2 ratio where PaO2 is the partial pressure 

of oxygen in arterial blood, and work of breathing index. 

Algorithm performance had an area under the receiver 

operating characteristic curve (AUC) of 0.871 and sensitivity of 

70.1% at 90% specificity.  

Keywords— Extubation failure, neonatal intensive care unit, 

outcomes estimation, respiratory distress syndrome 

I. INTRODUCTION 

More than 80% of preterm infants born at <31 weeks 
gestational age will develop respiratory distress syndrome 
(RDS) requiring endotracheal intubation and mechanical 
ventilation support in the neonatal intensive care unit (NICU) 
[1]. If improvement is noted within a few days or weeks, a 
clinical decision is made to extubate, and place the patient on 
a nasal continuous positive airway pressure (CPAP) trial. 
Across studies, 15%-40% of infants fail the trial, and must be 
re-intubated [2-4]. The failed trial exposes the infant to 
respiratory shock requiring re-intubation, increased ventilator 
support due to alveolar collapse (or atelectasis), and puts 
them at additional risks associated with the intubation 
procedure [5]. While it is important to identify the ideal time 
point for extubation, it is equally important to minimize the 
infant's time on artificial ventilation to reduce the risk of 
ventilator incidents and health complications, such as 
bronchopulmonary dysplasia or airway trauma [6].  

A clinical decision to extubate is based on a large amount 
of observation, physiological measurement, and clinical 
experience that is weighed by the neonatologist, and yet 
remains a difficult task despite advances in technology. An 
automated prediction system that helps the clinician make a 
more informed decision could reduce the risks and 
prevalence of extubation failure (EF). A number of 
prospective and retrospective studies were done to identify 
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risk factors and indices that may predict EF. The risk factors 
are from a variety of sources such as demographics (e.g., 
gestational age, birth weight) [2], ventilator settings (e.g., 
breath rate, fraction of inspired oxygen, tidal volume), 
pulmonary mechanics measurements (e.g., work of breathing, 
minute volume, airway resistance) [3],[4], and blood gas 
measurements (e.g., base excess, partial pressure of arterial 
oxygen) [2],[4]. Validation of these metrics is ongoing. Other 
indices, such as diagrammatic pressure-time index and 
noninvasive respiratory muscle pressure-time index have 
been designed specifically for predicting extubation outcome 
in preterm neonates [4]. However, measurement of these 
parameters requires an intervention like taking the patient off 
the ventilator, thus making it impractical for automated 
prediction systems.  

There have been attempts to build EF prediction models 
using artificial neural networks and multivariate logistic 
regression [7]. Potential predictors were selected through a 
literature review, and subsequently rated by clinicians prior to 
model building. While this approach is effective at leveraging 
the knowledge of clinicians, it may also miss variables 
overlooked in clinical practice. 

A rule-based machine learning approach was applied to 
the 12,000+ adult records in the MIMIC-II (Multi-Parameter 
Intelligent Monitoring of Intensive Care) clinical database to 
identify variables, and build a model for predicting 
respiratory instability in the adult intensive care unit (ICU) 
with good performance [8]. The initial 16 candidate features 
were pruned to four features based on having high 
discriminatory ability, and incorporated into the final model. 

In the MIMIC-II clinical database, Version 2.6 [9], 
laboratory LOINC codes allow use of digital laboratory 
results, instead of the less reliable manually-entered data. By 
applying machine learning tools, feature pre-selection was 
unnecessary, facilitating discovery of novel features that were 
previously ignored. This paper presents the machine-learning 
techniques used to locate features relevant to EF, and to 
develop a model for predicting extubation failure or success 2 
hours prior to the extubation attempt. 

II. METHODS 

A. Data Collection 

Retrospective data from the MIMIC-II database (released 
August 2011) was used for this study. This version contained 
data collected from over 7800 neonates during their stay in 
the NICU. Recorded variables included patient demographic 
data, manually-validated patient monitoring data (i.e., heart 
rate, blood pressure), chart data, laboratory results, ventilator 
settings and values, ICD-9 codes, LOINC codes, and free-
text nursing progress notes. Neonatal data were imported into 
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a PostgreSQL database, and subsequently selected variables 
were exported into a Matlab (Mathworks, 2009b) framework. 
Using the LOINC codes, the manually-recorded chart data 
were compared to the lab table. If copying from the lab 
results was evident, we used the lab results instead. Where 
appropriate, data from multiple chart or lab variables were 
merged, and replaced by a single variable. In general, lab 
results were often more complete and extensive than the data 
recorded in charts. 

B. Ventilation Times 

Direct information of whether the patient is on or off the 
ventilator at any given time is not available in MIMIC-II. To 
infer ventilation status, we used a heuristic approach, 
empirically utilizing information from multiple chart 
variables that were informative of ventilation status: Airway, 
Ventilator Mode, Respiratory Support, Breath Rate, and 
Oxygen Delivery Device. Ventilation status was coded as 
"intubated" or "not-intubated". An "extubation" event was 
defined as the time point where "intubated" status changed to 
"not-intubated". This rule-based method was used as a first-
pass method for patient selection. We manually verified the 
results against nursing notes to ensure the correct status was 
assigned to each event of each patient. 

C. Patient Selection 

Two groups of patients were selected for our reference 
data set. Inclusion criteria (Table I) were based on previous 
studies of extubation failure in neonates. Patients were 23 to 
31 weeks of gestational age, and intubated within 24 hours of 
birth in the same hospital. The duration of intubation was at 
least one day, and all patients were assigned ICD-9 code 769, 
indicating a diagnosis of Respiratory Distress Syndrome. The 
patients were subsequently segregated into extubation failure 
(EF) and no extubation failure (noEF) groups. Any patient 
that was re-intubated within 48 hours of the first extubation 
attempt was placed in the EF group, otherwise they were 
designated noEF.  

From the initial set of 7800 patient records, there were 
242 patients that met our inclusion criteria. Sixty-three of 
these patients had to be excluded from the study based on 
information in the nursing notes. Fifteen extubation events 
could not be confirmed, and forty-eight extubation events 
were actually self-extubations by the infant meaning the 
extubation was not initiated by a clinician. The final data set 
consisted of a total of 179 patients, 24 EF (who were re- 
intubated within 48 hours of being extubated) and 155 noEF. 
Descriptive statistics are summarized in Table II. 

D. Attribute Selection 

With the goal of finding features that can be used to 
distinguish between EF and noEF patients, we first evaluated 
a preliminary set of features for correlation and 

discrimination ability. These features were individual 
variables available in MIMIC-II, and indices calculated from 
them. The preliminary feature list included 100+ routinely 
monitored vitals, ventilator settings, laboratory results, and 
calculated indices. Due to limitations of the MIMIC-II data, 
some of the calculated indices were approximations of 
traditional indices used in literature. For example, the Rapid 
Shallow Breathing Index (RSBI) is usually defined as RSBI 
= RR/VT, where RR is the respiratory rate and VT refers to 
tidal volume. By the original definition of RSBI, VT and RR 
are measured without ventilator support [10]. In MIMIC-II, 
VT and RR are always measured with active ventilator 
support (at least for our patient population of intubated 
neonates), so it should be noted that our calculation is not as 
accurate, but is still a metric of patient respiratory ability. We 
applied similar approximations to ten other calculated 
indices, where relevant ones are shown in the Appendix. 

The preliminary feature list (100+ features) was 
subsequently pruned. Pearson’s correlation coefficient was 
calculated for each feature against every other feature. 
Features with correlations of R

2
 > 0.7 and p-value > 0.05 

were excluded from analysis. We then assessed the remaining 
features’ ability to differentiate between EF and noEF classes 
based on the ss1 statistic using minimum and maximum 
values calculated over a 2-hour interval prior to the 
extubation attempt. The ss1=sensitivity+specificity-1, also 
known as Youden's index, represents the trade-off between 
sensitivity and specificity. Higher ss1 values signify better 
discrimination between patient populations. Although other 
intervals (e.g., 6, 12, and 24 hours) could have been chosen, 
we felt the 2-hour interval reflects most accurately on the 
patient’s condition at the time of extubation. In our analysis, 
features with ss1<0.20 were noted, and if they were not 
previously mentioned in the literature as possible predictors 
in weaning trials, they were excluded. Finally, we excluded 
features that were recorded in <15 patients of the EF group to 
maintain a reasonable EF cohort for statistical analysis.  

Our final feature set consisted of 57 features, where 19 
features had an ss1 ≥ 0.2, and 38 features had an ss1 < 0.2. A 
representative list of feature's ss1 values is presented in Table 
III. From this table it is evident that some features with ss1 < 
0.2 are sensible features to keep in the analysis: Positive 
Inspiratory Pressure (PIP) is a ventilator setting that is 
adjusted based on the patient’s need; Respiratory Rate (RR) 

TABLE I.  INCLUSION CRITERIA 

 
Intubated within 24 hours of birth 

 
Intubated for at least 24 hours 

 
Gestational age 23-31 weeks 

 
ICD9 code 769 present 

EF Re-intubated within 48 hours extubation 

noEF Remains extubated 48 hours after extubation 

 

TABLE II.  DESCRIPTIVE STATISTICS 

  

  

noEF (n=155)                                                                 

(M=89, F=66) 

EF (n=24)                                                        

(M=17, F=7) 

Min Max Mean (std) Min Max Mean (std) 

Gestational age 23 29 26.7 (1.9) 23 29 25.9 (2.1) 

Birth weight (g) 485 2240 1104 (340) 580 1395 942 (224) 

Time from birth to 
intubation (h) 

0 24 12 (7) 2 23 14 (7) 

Time from birth to 

extubation (h) 
31 1282 176 (256) 36 1292 256 (353) 

Duration of 

intubation (h) 
24 1259 164 (255) 24 1277 242 (353) 

Length of stay (d) 7 279 68 (39) 11 173 96 (39) 

g = grams, h = hours, d = days 
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indicates the patient’s respiratory drive.  Other features such 
as Monocytes have not been reported in weaning trials but 
the ss1 indicated that it may be useful. Not all patients had 
every feature recorded, so the noEF and EF group sizes were 
not constant. For instance, for Total Minute Volume EF=17, 
while for PIP, EF=24. This means that in statistical analysis 
some models would inevitably contain fewer subjects than 
others. 

E. Statistical Analysis 

A total of 57 features were derived for statistical analysis. 
On deciding whether to use the minimum or maximum 
values calculated over the 2-hour interval prior to extubation, 
the calculation with highest ss1 was used. A logistic 
regression model building approach was used to generate 
candidate models for EF prediction. All combinations of 3 
features, with and without interaction terms, were 
bootstrapped 100 times to obtain robust estimates of area 
under the receiver operating characteristic (ROC) curve 
(AUC) and sensitivity at 90% specificity (SENSSP90). In a 
clinical setting, higher specificities are preferred to reduce 
false alarms. Candidate models with AUC<0.8 or SENSSP90< 
0.5 were excluded from subsequent analysis. The two models 
with the highest AUC and SENSSP90, and that did not share 
any features, were combined into a final 6 feature (+/- 
interaction terms) EF prediction logistic regression model. 
Individual and combined models were bootstrapped 100 
times to obtain mean ROC curves, estimates of AUC, and 
estimates of model parameters. 

III. RESULTS 

A.  Candidate Models 

Logistic regression was used to screen all combinations of 
3 features from a pool of 57 features. This yielded a total of 
58,520 candidate models (29,260 with and 29,260 without 
interaction terms). Overall, 43 models had an AUC>0.8 and 
93 models had a SENSSP90>0.5, however, only 13 models 
met criteria for both. The top performing model in terms of 
SENSSP90 was [FiO2, Monocytes, Total RSBI, *] with an 
AUC and SENSSP90 of 0.839 and 0.614, respectively, where 
the * indicates an interaction term. The rest of the 13 models 
had common features (i.e. Monocytes), therefore they could 
not be combined with the top model, so we relaxed our 
criteria to AUC>0.7. Of the 92 models that had both 
AUC>0.7 and SENSSP90>0.5, only 6 had features unique 
from the top model. The highest performing of these, in terms 

of SENSSP90, was [Heart Rate, PF ratio, Work of Breathing, 
*] with an AUC and SENSSP90 of 0.730 and 0.559, 
respectively. Combining the two models above yielded the 
highest performance with an AUC and SENSSP90 of 0.872 
and 0.701, respectively. Table IV presents candidate models 
and the combined model, sorted by SENSSP90. 

We generated bootstrapped ROC curves to gauge the 
performance of the combined model relative to the two 
individual models. Visually, the ROC curve followed the 
AUC results above. The (HR,PFratio,WOB,*) model had the 
worst performing ROC curve followed by the 
(Monocytes,RSBI,FiO2,*) model. Combining the two models 
yielded a better ROC, shown in Figure 1. We obtained 
bootstrapped estimates of the logistic regression model 
coefficients for the combined model given by (1). 

where FiO2 = fraction of inspired oxygen, HR = heart rate, PFratio = ratio of 
PaO2 to FiO2, RSBI = rapid shallow breathing index, and WOB = work of 
breathing.  

The maximum FiO2 had the highest coefficient, 0.41, 
followed by Monocytes, 0.16, and RSBI, 0.14. All other 
coefficients were <0.1. 

IV. CONCLUSION 

We introduced a new model for EF prediction developed 
with logistic regression, and six variables were discovered 
through machine learning techniques applied to patient 
records in the MIMIC-II  clinical database.  All  variables  in 
the model are routinely recorded in the NICU, allowing for 
the possibility of developing a real-time clinical decision 
support system. Performance of the model (AUC~0.87) is 
similar to models developed with other techniques and data 
sets [7]. This is encouraging because our method did not 
require a complex prospective trial, and uses routinely 
recorded variables. These features should be validated by a 
clinician, but were taken from previous studies.  

            (         )      (    )      (    )  
    (  )      (       )        (   )        ( )  
        (  )  

*=Monocytes*RSBI*FiO2 
**=HR*PFratio*WOB 

(1) 

TABLE III.  SS1 OF SELECTED FEATURES 

Feature # noEF # EF Min Max 

Monocytes 153 22 0.36 0.36 

PaO2 154 22 0.26 0.32 

Total Minute Volume 111 17 0.12 0.31 

Birth Weight 155 24 0.3 0.3 

SaO2 155 24 0.15 0.12 

PF Ratio 154 22 0.17 0.21 

Respiratory Rate 155 24 0.14 0.11 

PIP 154 24 0.11 0.11 

SaO2=arterial blood oxygen saturation, PF Ratio=PaO2/FiO2 ratio,  

PIP=peak inspiratory pressure  

 

TABLE IV.  MODELS WITH AUC > 0.70 AND SENSSP90 > 0.50 

Candidate Model AUC SENSSP90 

FiO2, Monocytes, Total RSBI,* 0.839 0.614 

Monocytes, Neutrophils, Total RSBI,* 0.847 0.522 

VT [Ventilator], Monocytes, Neutrophils,* 0.825 0.522 

Lymphocytes, Monocytes, Total RSBI,* 0.823 0.501 

Hematocrit, Monocytes, Spontaneous RSBI 0.817 0.500 

...73 more models that include a Monocytes term… 

Heart Rate, PF ratio, Work of Breathing,* 0.730 0.559 

PO2,PF ratio, Work of Breathing,* 0.731 0.548 

HGB,PF ratio, Work of Breathing,* 0.727 0.507 

Total Bili, aA ratio, Work of Breathing,* 0.704 0.505 

VT [Spontaneous], Hematocrit, aA ratio,* 0.710 0.505 

FiO2, Monocytes, Total RSBI,* + 
 Heart Rate, PF ratio, Work of Breathing,* 

0.871 0.701 

*interaction term 
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Our model also contains a unique combination of 
variables, including PFratio, previously reported as an 
insignificant risk factor [4], and a novel variable, Monocyte 
cell count, not mentioned as a predictor or risk factor in any 
previously published reports. There is evidence that preterm 
neonates with RDS have altered levels of monocytes 
compared to healthy preterm neonates [10]. Monocyte 
alterations are also implicated in neonatal sepsis and other 
perinatal complications [11]. It is therefore plausible that 
diagnosis and treatment of basic underlying illness may 
improve extubation outcome. Finally, the predominant 
coefficients in our model correspond to Monocytes, PFratio 
and FiO2, indicating that a combination of underlying illness 
respiratory insufficiency may influence the likelihood of EF. 

By considering clinical judgment of when to extubate as 
the test and noEF status as a positive outcome, we can 
estimate the positive predictive value (PPV) of both the 
clinician and the algorithm. Assuming a noEF prevalence of 
85%, clinical PPV is 86.5% while algorithm PPV is 97.5%. 
We see the algorithm yields an improvement in the 
probability that a patient selected for extubation will 
successfully complete it without extubation failure. The 
tradeoff is that, by fixing specificity at 90%, using this 
algorithm in a clinical setting would result in 10% of noEF 
patients staying on the ventilator longer. Although modestly 
longer ventilation times may not pose a large risk to patients, 
longitudinal analysis should be done to see how much longer 
the patient would stay ventilated before this algorithm deems 
them ready for extubation. 

There are a number of limitations that need to be 
considered when interpreting results from this study. While 
we verified the status of all patients in the study using the 
nursing notes, it is possible that our rule-based patient 
selection method could have missed patients in the MIMIC-II 
database. The number of subjects included in the final model, 
n=116 (101 noEF, 15 EF), is considerably less than the 
number of subjects that met inclusion criteria, n=179 (155 
noEF, 24 EF), because patients that did not have all 6 
features recorded had to be excluded from analysis. In 
general, the more variables included in any model, the more 
likely patients were dropped. We chose not to impute missing 
data to avoid biasing the mean. The interval chosen for data 

collection was 2 hours prior to the extubation events. This is 
an arbitrary choice, other intervals (e.g., 6, 12 and 24 hours), 
or combinations thereof, should be evaluated. Finally, we 
used bootstrap only for model building. Ideally, feature 
selection and model building should be performed together to 
reduce the risk of overtraining. 

APPENDIX 

RSBI = RR/VT, where RSBI = rapid shallow breathing index, RR = 

respiratory rate, VT = tidal volume.  

WOB = MAP*RR*VT, where WOB = work of breathing, MAP = mean 

invasive arterial blood pressure. 
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