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Abstract— Sleep analysis is critical for the diagnosis, treat-
ment, and understanding of sleep disorders. However, the
current standards for sleep analysis are widely considered
oversimplified and problematic. The ability to automatically
annotate different states during a night of sleep in a manner
that is more descriptive than current standards, as well as
the ability to train these models on a patient-by-patient basis,
would provide a complementary approach for sleep analysis. We
present a method that discovers latent structure in sleep EEG
recordings, by extracting symbols from the continuous EEG
signal and learning “topics” for a recording. These sleep topics
are derived in a fully automatic and data-driven manner, and
can represent the data with mixtures of states. The proposed
method allows for identification of states in a patient-specific
way, as opposed to the one-size-fits-all approach of the current
standard. We demonstrate on a publicly available dataset of 15
sleep recordings that not only do the states discovered by this
approach encompass the standard sleep stage structure, they
provide additional information about sleep architecture with
the potential to provide new insights into sleep disorders.

I. INTRODUCTION

Sleep disorders, which include conditions such as sleep
apnea and insomnia, have been estimated to affect over 50
million Americans [1]. These disorders are associated with
higher rates of driving and occupational accidents, and an
increased risk of cardiac disease [2,3].

Analysis of sleep is critical for the diagnosis, treatment,
and scientific understanding of these disorders. Sleep analy-
sis involves the identification of key properties in polysomno-
graphic recordings, collections of a variety of physiological
signals, throughout the course of a night of sleep. The most
relevant of these signals for understanding the structure of
sleep is the electroencephalogram (EEG). The EEG records
the electrical activity of the brain, caused by the firing of
millions of neurons, using electrodes placed on the scalp.
EEG is the most commonly used signal in identifying the
quality and progression of sleep, and often only a single
electrode of EEG is necessary for sleep analysis.

Sleep is conventionally considered to be comprised of a
number of stages. These stages consist of two main types,
rapid eye movement (REM) and non-rapid eye movement
(NREM). NREM can be divided further, into four stages (1,
2, 3, and 4) reflecting the continuum between drowsiness
and deep sleep. This organization of sleep stages, designed
by Rechtschaffen and Kales (R&K) [4], has been the sleep
staging standard. Sleep staging is the process of annotating

1 Computer Science and Engineering, University of Michigan, Ann
Arbor, USA alexve@umich.edu

2 Massachusetts General Hospital, Boston, MA
This material is based upon work supported by the National Science

Foundation.

a recording of sleep with sleep stages, by evaluating all
30-second windows in the recording and assigning each
data window to one of these conventional stages. This is
primarily done using the EEG, although other signals such
as the electrooculogram (EOG) provide useful supplementary
information. The set of annotations for an individual’s entire
night of sleep is referred to as a hypnogram.

Normal sleep has a cyclic organization, in which individ-
uals cycle from light to deep sleep, REM, and then return
to light sleep. The transitions between states and the time
spent in individual states carry information about the quality
of sleep and insights into potential sleep disorders. The
organization of sleep across the night, usually measured with
the R&K stages, is referred to as sleep architecture, and is
evaluated using the hypnogram.

Despite its essential role in sleep analysis, R&K staging is
commonly considered to have many problems. These derive
from both the subjectivity of the sleep staging process and the
simplifications inherent in the stage definitions. We aim to
address these problems with an automatic and unsupervised
method for identifying latent states in sleep recordings.
We explore an approach that extracts “words” from the
EEG signal, and evaluate the EEG recordings as if they
were natural language documents using a topic modeling
approach. We hypothesize that this topic modeling approach
can more expressively model structure across a night of sleep
in an entirely data-driven and patient-specific manner. By
tailoring states to a specific patient, and by allowing for
mixtures of states, the resulting model improves in several
ways over R&K staging and may provide new insights into
sleep disorders.

II. BACKGROUND

There are a number of problems with the traditional
approach to sleep staging. First, R&K is often regarded as
an oversimplification of the actual structure of sleep. The
hard distinctions between stages, such as between stage 3
and stage 4 which reflect different levels of deep sleep,
impose unnecessary structure on the data to facilitate manual
annotation when the true progression towards deeper sleep is
likely a continuous process. Additionally, the stages may not
represent the full variety of sleep activity well. For instance,
drowsiness (stage 1 sleep) has been classified into as many
as 9 different stages [5], a level of detail which the R&K
system is unable to capture.

Another issue with R&K is that inter-rater reliability
(how well the annotations of two different experts match)
is low, meaning that hypnograms of the same night of sleep
from two different annotators may differ significantly. This
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detracts from the value of the R&K stages as a standard,
as annotations from different sleep labs are not directly
comparable. The subjectivity of applying the R&K standard
has motivated the design of a wide variety of automated sleep
staging algorithms [6]. Unfortunately, due to the subjectivity
of the R&K standard, evaluating the accuracy of these
stagers is difficult, as prediction errors may actually reflect
reasonable choices of annotation.

An unsupervised algorithm to identify sleep states could
address both of these critical issues. An automatic method
would give the consistency expected of a sleep staging stan-
dard, by avoiding the subjectivity of human annotators. By
learning structure directly from the data, such an approach
would also avoid the constrictive reliance on prior definitions
of sleep stages, opening the door for richer descriptions and
new ways to quantify sleep organization.

A final difficulty with the use of R&K is that the system
was designed for young, healthy subjects. There are many
individual differences in EEG and sleep organization [7], and
applying a single set of staging definitions to a broad range
of patients may pose difficulties in interpretation.

Prior work by Flexer et al. used a hidden Markov model
(HMM) in an unsupervised approach to describe the struc-
ture of sleep recordings [8]. The method identified three
population-wide states, corresponding to wake, sleep, and
REM. The model used each window’s posterior distribution
over states as a continuous measure of sleep stages. A
shortcoming of this approach is that although it results in a
continuous mixture over states, the HMM assumes discrete
states when estimating the model. This approach effectively
simplifies R&K scoring even further, by reducing the set
of states to three, limiting the model’s ability to represent
complex structure in the EEG.

We explore an alternative approach to unsupervised sleep
analysis that allows for a more nuanced description of the
sleep EEG. After extracting features from the EEG, we
discretize the features and treat each value as a symbol. We
treat these symbols as analogous to words, and apply Latent
Dirichlet Allocation (LDA), a common approach to topic
modeling in natural language documents, to the resulting
symbols. Topic modeling identifies a set of themes in a
collection of documents, which describe the latent structure
behind the generation of the documents. In the context of
sleep analysis, our goal is to identify latent states in the EEG
recordings through “sleep topics” that can expand upon the
information present in the R&K sleep staging. The benefit
of using “sleep topics” lies in LDA’s assumption that a
given data instance (a document) can derive from multiple
topics, as opposed to a single state. This allows for model
flexibility in identifying sets of potentially concurrent time-
varying states, as well as allowing for states that relate to
only a subset of features.

We train models on individual patients, allowing each
individual’s sleep to be modeled separately. The development
of patient-specific models avoids adverse effects inherent
in fitting a single model to a population, where individual
differences may be lost or misconstrued. While universally

defined sleep stages have a critical role in sleep analysis, the
development of more expressive patient-specific models can
provide complementary information that expands the set of
useful sleep analysis methods.

III. METHODS

For each patient, the single-channel EEG recording was
divided into non-overlapping one-second segments. Each
segment was analyzed to extract a variety of features. The
features used were spectral power in four commonly used
frequency ranges for EEG analysis (delta: <4 Hz, theta: 4-7
Hz, alpha: 8-13 Hz, and beta: 14-30 Hz).

After extracting features for each short window, we dis-
cretized each feature on a per-patient basis. The goal of the
discretization is to convert the original continuous time series
into a set of meaningful “words” that can be used to learn a
topic model. The SAX approach to time-series symbolization
was used [9], where for a given feature (e.g. delta energy),
the full range of values for the patient were divided into
5 equiprobable bins, with boundaries at each quintile. Each
bin was assigned a different symbol, corresponding to low
through high values of that feature. After symbolization, each
one second window was represented by four symbols, one
for each spectral power feature in the data.

We divided each recording into non-overlapping 30-
second segments, corresponding to “documents”. The length
of 30 seconds was chosen to correspond with the time scale
used by R&K sleep staging, so that the results between the
two methods would be comparable. In LDA, these documents
are considered as “bags of symbols”, where a document is
represented as a vector of symbol frequencies, without con-
sidering order. We consider the set of symbols generated by
SAX analogously to words in a natural language document.
As the features were generated from one second segments,
each document consisted of 120 symbol instances. The
Latent Dirichlet Allocation model was applied to learn topics
from the collection of documents (all 30-second windows in
the recording).

LDA is a generative model for a collection of documents
that assumes that the collection was derived from an underly-
ing set of ”topics” [10]. A topic is defined as a set of related
symbols, for example symbols related to the waking state
(high alpha energy, low delta energy). Specifically, a topic is
a distribution over all symbols in the data. Each document
is assumed to have been generated by a combination of
topics, and has its own multinomial distribution over the set
of all topics (e.g., p(light sleep) = 0.5 and p(deep sleep) =
0.5). The model assumes that each symbol in the document
was obtained by first sampling a topic from the document’s
distribution over topics, and then sampling a symbol from
that topic’s distribution over symbols.

More precisely, LDA defines an underlying set of K
topics, where each topic k can be defined by a distribution
over all of the symbols in the vocabulary. Each document
d is itself generated by a distribution over topics, where
the generative process assumes a two-part process for each
symbol wdi in the document. First, a topic zdi is chosen by
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sampling from that document’s topic distribution θd. Then
the symbol wdi is sampled from that topic’s distribution
over symbols βk. More explicitly, the model defines for a
document d the prior distributions over observed symbols
wdi, their latent topics zdi, and the document distributions
over topics θd as:

θd ∼ Dir(α)

zdi ∼ Multi(θd)

wdi ∼ Multi(βzdi)

where α parameterizes a symmetric Dirichlet prior over
topic distributions. In training the model, the parameters of
interest are the θd and βk values, which characterize the
topics of semantically related symbols and the proportions
of these topics in each document. The parameters of the
model (the probabilities of these multinomial distributions)
can be inferred from a set of unlabeled data using a variety of
methods (Markov Chain Monte Carlo, Variational Inference).

A benefit of applying LDA to sleep analysis when com-
pared with the commonly used HMM is that the topic model
does not assume discrete states. Under the LDA generative
model there can be multiple processes responsible for the
generation of single window, whereas the HMM assumes
that each window was generated by a single state. While
it is possible to interpret the HMM’s posterior distribution
over states as a continuous mixture, the fact that the model
optimization makes the discrete state assumption greatly
affects the parameter estimates. Factorial HMMs remove
this assumption, but like HMMs each state models the joint
distribution of all features, so that each state must account
for all features in the data. By considering windows as a bag
of symbols from different features, each topic has the option
of modeling only a subset of features, resulting in a more
flexible representation of the data.

We trained a model for each patient using all of the docu-
ments generated from their recording. Parameter estimation
was done with variational inference. The number of topics
for each patient was chosen in a data-driven manner using the
Akaike Information Criterion. The estimates for the posterior
distribution of each window over the topics was used as a
representation of the sleep recording, analogous to the R&K
stages.

We evaluated the generated models to confirm two prop-
erties. First, we assessed whether the unsupervised model
captured the same structure as the R&K standard. The ability
of the unsupervised model to encompass well-established
properties of sleep structure acts as validation of the quality
of the results. This was done using two approaches: first,
visualization was used to establish a correspondence between
the derived topics and the R&K stages. Second, we trained a
support vector machine (SVM) classifier that used the topic
mixtures as features in predicting the R&K stages. High
accuracy for a sleep stager built on topic mixtures would
confirm the retention of the R&K relevant information. This
also illustrates a method to establish correspondence between

the unsupervised model’s structure and the currently accepted
gold standard of sleep staging. For training and evaluating
the SVM, the data was split into equally-sized training and
test sets. Due to the patient-specificity of the topic models,
predictors were trained on a per-patient basis.

As a second point of evaluation, we assessed whether the
topic models provided more information about the structure
of sleep than the R&K stages. Due to the difficulty of exper-
imentally validating such qualities, we evaluate the novelty
of the results by visualizing the resulting topic mixtures and
qualitatively comparing with the R&K standard.

We conducted all evaluations on the publicly available
MIT-BIH polysomnographic database from Physionet, com-
prised of multimodal recordings from 14 patients with sleep
apnea. Each recording contained a single channel of EEG,
with recording durations ranging from 3 hours and 40
minutes to 6 and a half hours.

IV. EVALUATION

The derived topics demonstrate a clear visual concordance
with the R&K standards. Figure 1 compares the gener-
ated model with the R&K annotations for several patient
recordings. The top panels depict the model estimates for
each window’s distribution over topics, with each vertical
strip corresponding to a 30 second time span. Each color
in the mixture diagram represents a different topic. The
size of a color band for a window indicates that topic’s
contribution to that window. The bottom panels show the
R&K annotations using the same 30 second boundaries. The
models for each patient were trained separately, and there is
no correspondence between the topic coloration between the
two patients.

Figure 1 indicates that the inferred model contains similar
structure to the R&K stages. For the left patient, the black
topic (bottom) corresponds to stage 2, with increases as the
patient enters stage 2 sleep and decreases as they begin
entering stages 3 and 4. The white topic (top) reflects deeper
sleep (stages 3 and 4), dominating the recording from epochs
180 to 330. The second patient reflects similar structure, with
a topic corresponding to the awake state, another reflecting
light sleep, and a third reflecting deeper sleep.

The accuracies in Table I indicate that the topic mixtures
can predict R&K stages within the range of inter-rater
reliability, which has been estimated between 70 to 90%
[11], achieving a mean accuracy of 70.1% and a median
accuracy of 71.2%. Scores in this range by an automatic
stager can be considered good performance as they achieve
the same correspondence with the reference as another
human annotator might. This demonstrates that despite the
proposed method’s discretization and unsupervised learning
of structure, it preserves the information relevant to the
current standard of sleep staging, and has the ability to
convert from the derived topics back to the R&K standard.

Visual inspection reveals several properties that indicate
greater expressive power than the sleep stages. First, the
sleep topic model shows a continuous shift between states,
reflected by gradual rather than abrupt transitions between
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TABLE I
ACCURACY OF SVM MODELS TRAINED WITH TOPIC MIXTURE FEATURES WHEN PREDICTING R&K STAGES ON THE MIT-BIH DATASET

Recording ID 01a 01b 02a 02b 03 04 14 16 32 37 41 45 48 59 60 61 66
Accuracy 73.1 78.9 82.4 81.3 58.6 76.4 58.4 71.2 85.0 85.4 53.1 64.7 62.8 61.1 71.5 68.1 59.8

Fig. 1. Topic mixture diagrams (top) and R&K hypnograms (bottom) for patients slp32 (left) and slp59 (right).

different depths of sleep. This allows for better assessment
of the relative depth of sleep, for example, where a light
sleep topic increases during waking epochs. The relative
smoothness of transitions is a property of the data as opposed
to the model, as the exchangeability of documents in the
LDA model means that there is no explicit relationship
between adjacent windows as in an HMM.

An observation with regard to the second patient shows
potential utility for sleep topics in going beyond the capabil-
ities of R&K scoring. In the second patient’s diagram, there
are three long periods of stage 2 sleep, in epochs 160 to 200,
270 to 290, and 340 to 360. In the first and third instances,
the patient progresses into deeper sleep (stages 3 and 4),
while in the second instance they progress into REM. The
topics capture this distinction well before the state transition,
where the deeper sleep topic (top) is present and increasing
in the first and third cases well before the transition begins,
yet absent in the second. This indicates a difference in stage
2 sleep preceding the transitions, verifying the ability of the
model to detect variations within a single R&K stage.

V. CONCLUSION

We present an unsupervised approach to identifying struc-
ture in sleep EEG recordings. The sleep topic model im-
proves on the current standard for sleep analysis by providing
an automated, data-driven algorithm for learning patient-
specific sleep states. The approach relaxes the traditional
assumption of discrete states, allowing for a more expressive
model. The use of patient-specific models allows for better
modeling of individual differences, and complements the
current use of universal sleep staging systems. The resulting
models are capable of representing standard sleep stages,
while including additional information.

A clinical validation of the method by investigating the

derived topics or the relationships between the derived
models and sleep disorders is an area for future work,
and currently under investigation. A possible extension to
the presented methods could incorporate additional features,
from other time-scales or additional physiological signals, to
fully leverage the benefits of LDA.
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