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Abstract— The advent of remote and wearable medical
sensing has created a dire need for efficient medical time
series databases. Wearable medical sensing devices provide
continuous patient monitoring by various types of sensors and
have the potential to create massive amounts of data. Therefore,
time series databases must utilize highly optimized indexes
in order to efficiently search and analyze stored data. This
paper presents a highly efficient technique for indexing medical
time series signals using Locality Sensitive Hashing (LSH).
Unlike previous work, only salient (or interesting) segments are
inserted into the index. This technique reduces search times by
up to 95% while yielding near identical search results.

I. INTRODUCTION

The advent of remote and wearable medical sensing has

created a dire need for efficient medical time series databases.

Wearable medical sensing devices provide continuous patient

monitoring by various types of sensors, such as accelerom-

eters for activity monitoring; electrocardiogram (ECG) for

heart monitoring; and pulse oximeters for blood oxygen

saturation monitoring. These devices have the potential to

create massive amounts of data. For example, there are

currently over 3 million people worldwide implanted with

a pacemaker [1]. If these systems had the ability to gather,

store, and transmit a continuous ECG signal, we could expect

to receive over 560 terabytes of data per day, just from such

individuals (assuming a three channel ECG, sampling rate of

360 Hz, and 2 byte ADC). Therefore, time series databases

must utilize highly optimized indexes in order to search and

mine stored data.

Locality Sensitive hashing (LSH) [2] is one technique for

indexing high dimensional objects (such as medical time

series signals). Searches on LSH indexes have a provable

sub-linear computational complexity with respect to the size

of the database. This is unlike spatial indexes that have

been shown both theoretically and experimentally to perform

worse than linear scan with a sufficient number of dimen-

sions (D > 10) [3]. LSH is a probabilistic hashing method

with the property that similar objects have a higher probabil-

ity of collision. Searches using LSH return both matches and

non-matches and filters the non-matches through pruning.
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Authors in [4] showed that the search complexity of LSH is

largely dominated by this pruning, and therefore, a reduction

in pruning can significantly improve the overall run times of

an LSH index.

This paper proposes the use of Salient Segmentation [5]

to intelligently reduce the size of an LSH index. Salient

Segmentation is the process of extracting unlikely (or in-

teresting) segments from a time series signal. Segmentation

is accomplished through the exploitation of the stationary

and cyclical properties of medical time series signals and

ensures the following two properties: 1) All salient patterns

are segmented; and 2) All salient patterns are segmented

consistently (i.e., alignment). Populating the index with only

salient segments decreases the number of LSH non-matches

due to mis-alignments, thereby improving the overall run

times with minimal degradation to the quality of the respec-

tive search results.

There are two main contributions to this paper. First,

this paper presents an improved Salient Segmentation tech-

nique. The original technique presented in [5] relies heav-

ily on filtering techniques to extract salient segments. The

parametrization of this filtering is domain specific and often

arbitrary. The proposed Salient Segmentation algorithm in

this paper requires no filtering, thereby eliminating subjec-

tivity. Second, this paper presents the performance improve-

ments of LSH indexes populated with only salient segments

over LSH indexes populated with all segments (both salient

and non-salient).

The proposed method is evaluated on three publicly avail-

able datasets consisting of real physiological data. Search

results of this method are compared to using LSH alone (e.g.,

populating the index with all segments including both salient

and non-salient segments). In all three datasets, the salient

index returned near identical results to the complete index

and reduced the number of computations by 80% or more.

II. BACKGROUND

LSH was introduced as an alternative to spatial indexing

schemes [2]. Spatial indexing, such as those in [6][7], are not

a feasible solutions for indexing medical time series signals

as these methods have been shown both theoretically and

experimentally to perform worse than sequential search for

data with as little as ten dimensions [3].

LSH is based on a family of hashing functions H that are

(r1, r2, p1, p2)-sensitive meaning that for any v, q ∈ S:

• if v ∈ B(q, r1) then PrH [h(q) = h(v)] ≥ p1
• if v 6∈ B(q, r2) then PrH [h(q) = h(v)] ≤ p1,
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where v and q are high dimensional objects within search

space S, B(q, r) represents the set of objects within distance

r to q, p1 > p2, and r2 > r1. The gap between p1 and p2
is increased by combining several functions from the same

(r1, r2, p1, p2)-sensitive family. For the purpose of this paper,

r1 = R and r2 = cR where c is a constant.

More simply, an LSH scheme guarantees (within some

probability) that all objects within distance R to the query

object are returned. In addition, all objects that fall at

a distance greater than cR are not returned with some

probability. The result sets of LSH are pruned such that all

objects greater than distance R are suppressed. [2] show that

the computational complexity of a search is sub-linear and

dominated by O(nρ) distance computations (pruning) where

ρ = ln 1/p1

ln 1/p2

.

Pruning is extremely costly even with a sub-linear number

of distance computations. One method to improve pruning

times is to reduce the number of segments indexed within

a databases. However, this must be done intelligently as

arbitrarily removing objects will severely reduce the quality

of search results. Salient Segmentation [5] is a generic

approach to reducing the size of a time series index without

degrading search performance. Salient segmentation extracts

the most interesting (or salient) segments from a time series

signal. A time series is defined as an ordered set of points

of length n within the time domain. More formally:

Tn = t1, t2, ..., tn, (1)

A segment is defined as an ordered set of points of a fixed

size m within a time series where m ≤ n. More formally:

si = ti−m

2
, ..., ti, ..., ti+m

2
−1, (2)

Salient Segmentation comprises of a function Φ that

transforms a time series T to a time series saliency function

(TSF). The TSF is formally defined as:

TSF = Φ(T ). (3)

Each point in the original time series that corresponds to a

local maximum in the TSF is determined to be locally salient.

Each respective segment si centered at a salient point i is

extracted. All other segments are ignored.

The saliency transformation proposed by [5] modelled the

time series as a Markov chain where each point in the TSF

was calculated as:

TSFi = − log

i+⌊m/2⌋∏
j=i−⌊m/2⌋

Pr(Tj |Tj−1 = tj−1) (4)

Equation (4) has two issues. First, Markov chains are

not inherently good at localizing the exact location of a

salient point. Fig. 1 shows three alignments of the same

pattern with the most salient point denoted. The TSF defined

in (4) labels all three alignments with the same saliency

resulting in poor localization of the salient point. Second,

Fig. 1. Displays the same pattern at three different alignments. The
most salient point is marked for each alignment. The TSF defined in (4)
would label all three alignments with the same saliency resulting in poor
localization of the salient point.

(4) results in an extremely noisy TSF making it difficult to

label local maximums. Both these issues were addressed in

[5] by filtering the TSF. However, the parametrization of

the filtering is extremely subjective and domain specific. An

improper parametrization can lead to over segmentation or

under segmentation.

This paper address both issues in the Salient Segmentation

algorithm proposed in [5]. First, saliency is calculated by

using a range of segment lengths unlike one static length in

[5]. The average of each segment width’s saliency centered

around point i defines the saliency of i (TSFi). Second,

the saliency function is updated to use entropy. The updated

saliency function provides a far smoother TSF resulting in

the ability to localize salient points without filtering.

III. METHOD

There are two main components of the experimental

implementation: index structure and index population. Index

structure utilizes LSH and is the process of indexing seg-

ments. Index population is the process of inserting salient

segments into the index structure.

A. Index Structure

The index structure utilizes the LSH scheme based on p-

stable distributions defined in [4]. The authors propose the

following hash function:

ha,b(v) = ⌊
a · v + b

w
⌋, (5)

where a is a randomized vector following a Gaussian dis-

tribution, b is a uniformly randomized vector, and w is a

predefined constant. Using the properties of the p-stable

distribution, the authors show that the probability of collision

is calculated as:

p(c) =

∫ r

0

1

c
fp(

t

c
)(1−

t

r
)dx, (6)

with c being the distance between two vectors. As can be

seen by (6), the probability of collision decreases monoton-

ically as c increases.

As stated earlier, the gap between p1 and p2 is enlarged by

combining several functions together. This is accomplished

in two ways. First, k hashes are combined to form one parent

hash. Objects x and y are matches if all k hashes match

between x and y. Second, L parent hashes are created such
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TABLE I

LSH PARAMETRIZATION

Parameter Value

|v| 512 (ECG, GAIT)
64 (WALK)

R 3
w 4
c 4

that objects x and y are matches if at least one of the L

parent hashes match between x and y. Therefore, a total of

kL hash functions (defined by (5)) are created such that each

a and b are drawn independently.

The parametrization of the LSH hashing scheme is shown

in Table I. A detailed explanation of the parametrization of

LSH is given in [4].

B. Index Population

The index is populated using an improved Salient Segmen-

tation method. This method models a time series as a Markov

model such that the probability of each point is defined as

follows:

p(ti) = Pr(Ti|Ti−1 = ti−1) (7)

The saliency of a time point ti is calculated using the

entropy of different window sizes centered at ti:

TSFi = −
1

|W |

∑
w∈W

i+w

2∑
j=i−w

2

p(ti) log p(ti), (8)

where W is the set of window sizes. For best results, window

sizes should range from the smallest pattern expected to the

largest pattern expected. The experimental window sizes are

given in Table II.

Each point ti that corresponds to a local maximum at

TSFi is extracted as a salient segment defined in the range

[i− m
2
, i+ m

2
], where m is the size of the extracted (indexed)

segment.

IV. RESULTS

Two databases were created for the experimental section.

Both databases use the LSH indexing structure presented by

[4]. The first database uses a salient index and populates

the index with only salient segments. The second database

uses a full index and populates the index with all segments

(i.e., both salient and non-salient segments). As shown in

[5], Salient Segmentation yields similar alignments for sim-

ilar patterns. This means that two similar salient patterns

TABLE II

SALIENT SEGMENTATION PARAMETRIZATION

Dataset Min Max Increment

ECG 25 250 25
GAIT 100 200 10
WALK 20 40 2

may differ slightly in their alignment. Non-elastic distance

measures, such as Euclidean distance, can be largely effected

by small misalignments. Therefore, recall can be improved

dramatically by including a small number of neighboring

segments to each salient segment. For example, assuming a

salient segment centered at ti, all segments centered between

ti− p

2

and ti+ p

2

are also inserted into the index, where p is

defined as the added buffer. During experimentation, p was

varied to test its effects.

This paper leveraged three datasets in its assessment of

the proposed method. These datasets include:

1) MIT-BIH Arrhythmia Database [8] (ECG). This dataset

contains several 30-minute segments of two-channel

ambulatory ECG recordings. These sample included

arrhythmias of varying significance.

2) Gait Dynamics in Neuro-Degenerative Disease

Database [9] (GAIT). This dataset contains data

gathered from force sensors placed under the foot.

Healthy subjects as well as those with Parkinson’s

disease, Huntington’s disease, and amyotrophic lateral

sclerosis (ALS) were asked to walk while the data

was recorded. Data includes 5-minute segments for

each subject.

3) WALK [5]. This dataset contains a series of annotated

recordings from a tri-axial accelerometer worn in a

subject’s pants pocket. Data was recorded while sub-

jects travelled through the interior of a building.

Fig. 2 compares salient indexes (includes only salient

segments) to full indexes (includes both salient and non-

salient segments). Fig. 2 A shows the the number of true

results returned by the salient index over the number of

true results returned by the full index. An increase in buffer

improves the results for all three datasets. However, the

increase in buffer also increases the number of pruned results

as shown in Fig. 2 B. The ECG and GAIT datasets are

optimal with a buffer size of 40 (for a salient segment at

ti, index all segments from ti−20 to ti+20). For a buffer

of 40, the ECG and GAIT datasets retrieve 92% and 89%

respectively of the full results and prunes only 15% and 8%

respectively than that of the full LSH index. Results for the

WALK dataset are best with a buffer of 10-20 with 70%-

85% of the full results set with 18%-37% of the number of

pruning operations.

The percentage of pruning results increases much faster for

the WALK dataset than that of the ECG and GAIT datasets

since the segment size is much smaller for WALK. For

instance, one cycle (or step) in the WALK dataset consists

of approximately 50-60 time points. Therefore, a buffer of

size 40 results in an index that is very close in size to the

full index.

The overall performance of the WALK dataset is not as

good as the ECG and GAIT datasets due to two reasons.

First, accelerometer data is far more diverse than the GAIT

and ECG datasets. This means that the measured difference

(Euclidean distance) of the accelerometer values between

two similar steps is larger on average between two similar

heartbeats in ECG or two similar steps in GAIT. Second,
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Fig. 2. A.) Displays the number of true results returned by the salient index over the number of true results returned by the full index with an increasing
amount of buffer. B.) Displays the number of LSH results (pre-pruned) of the salient index over the number of LSH results for the full index with an
increasing amount of buffer.
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Fig. 3. Displays the percentage of signal covered by salient segmentation
for the ECG, GAIT, and WALK datasets.

the WALK dataset is much smaller than the ECG and

GAIT dataset. The full WALK dataset consists of about

.4M indexed segments versus the ECG and GAIT datasets

with 61M and 11.4M indexed segments respectively. Given a

larger diversity with a smaller number of potential matches,

the experiments must be run with a relatively larger R for

WALK (note that all datasets use the same R, but WALK

has a much smaller segment size). A smaller R will result

in extremely small result sets for both the salient and full

indexes. This small R will therefore yields an artificially high

performance for the salient index. For example, result sets

may be of size 1 where the results include only the search

segment.

For the previous experiment, the search segment was

randomly selected from the group of salient segments. In

order for this experiment to be valid, salient segments should

cover a large amount (or all) of their respective time series

signal. Fig. 3 displays the percentage of signal covered

by salient segmentation for the ECG, GAIT, and WALK

datasets. All three datasets have coverage of at least 97%

and therefore, their respective salient indexes consist of a

large majority of the original time series signals.

V. CONCLUSION

This paper presented a highly efficient technique for in-

dexing medical time series signals. Time series signals were

indexed using Locality Sensitive Hashing (LSH). LSH has a

provable sub-linear computational search complexity. LSH’s

search complexity is heavily dominated by pruning, and

therefore, can be improved by removing redundant segments.

Redundancy is reduced by employing Salient Segmentation.

Salient Segmentation is the process of extracting unlikely (or

interesting) segments from a time series signal. The index is

populated with only salient segments while all other non-

salient segments are ignored.

The proposed technique was tested on three publicly

available physiological datasets. The amount of pruning was

reduced by up to 95% while producing near identical search

results to a complete index. In addition, Salient Segmentation

was shown to produce segments with high coverage. The

indexed segments covered more than 97% of the original

time series for all three datasets.
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