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Abstract— An automatic method is presented in order to
detect lung nodules in PET-CT studies. Using the foreground
and background mean ratio independently in every nodule,
we can detect the region of the nodules properly. The size
and intensity of the lesions do not affect the result of the
algorithm, although size constraints are present in the final
classification step. The CT image is also used to classify the
found lesions built on lung segmentation. We also deal with
those cases when nearby and similar nodules are merged into
one by a split-up post-processing step. With our method the
time of the localization can be decreased from more than
one hour to maximum five minutes. The method had been
implemented and validated on real clinical cases in Interview
Fusion clinical evaluation software (Mediso). Results indicate
that our approach is very effective in detecting lung nodules
and can be a valuable aid for physicians working in the daily
routine of oncology.

I. INTRODUCTION

Positron Emission Tomography (PET) is one of the
most important functional modalities in the field of nuclear
medicine and oncology [1], [2], [3]. Combining PET with
Computed Tomography (CT) brings great benefit to accu-
rately localize lesions in the PET due to the anatomical
information provided by CT. Lung cancer is especially the
subject of oncological examinations, since it is one of the
most common and dangerous cancer diseases in the world
[3], [4]. Hence the early detection of lung nodules based
on PET-CT is a key step to increase the survival ratio of
individuals.

Most prior methods are based on global Standard Uptake
Value (SUV) threshold which is either fixed or given by the
user [2], [5], [6]. Obviously, these solutions do not guarantee
that all lesions get the optimal local threshold value.

Other methods require a manually given initial threshold,
which is further modified independently for all individual
lesions based on their local lesion - background mean ratio
[7]. Unfortunately these methods often operate with a fixed
ratio given by the user which does not guarantee that
all individual lesions are optimally segmented. Furthermore
these methods still suffer from the issue of merging nearly
located but independent lesions into one large region.

Our goal was to design an automated method which accu-
rately detects and segments lung nodules based on multiple
information derived from PET-CT. Our idea was to detect

N. Zsoter, G. Szabo, P. Bandi and L. Papp are with Mediso
Medical Imaging Systems Ltd., Baross str. 91-95, Budapest, Hungary,
norbert.zsoter@mediso.hu

Z. Toth is with Scanomed Ltd., Budapest, Hungary
R. A. Bundschuh is with University of Wuerzburg, Wuerzburg, Germany
J. Dinges is with Technical University of Munich, Munich, Germany

all local maxima positions inside of the PET and to per-
form region growing from them to find that region-specific
threshold where the given region has the highest gradient. We
considered several constraints such as maximum allowable
size of a nodule. Furthermore we especially focused on
detecting nearby, yet independent nodules as separate ones
without merging them. Although our method operated with
a low threshold, it was necessary only to filter out too small
background noises. Nevertheless, this threshold value did not
affect the final shape of our regions. We consequently derived
tissue information from CT by adopting multiple fuzzy based
tissue/organ segmentation approach to automatically detect
the lungs inside of the CT. Using this information could
help us to automatically classify detected lesions inside of
the PET.

II. MATERIALS AND METHODS

A. Image data

We collected 26 positive and 5 negative lung nodule PET-
CT cases and their corresponding medical reports including
findings localized by nuclear medicine specialists and result
of pathological evaluation. The images represented the torso
of the body which always fully included the lungs. PET
images were attenuation and SUV corrected. The voxel
resolution of our PET images was uniformly 4mm in all
three directions. CT images had 0.98x0.98x3.17 voxel size,
where the last value represented the spacing between axial
slices. CT image values were Hounsfield corrected.

We denoted the PET and the CT images by PT and CT
respectively.

B. PET Peak detection

Similarly to prior related work [8] we detected the local
maxima positions (peaks) inside of the PET in order to
determine the core of all potential hot spots.

The local maxima detection was performed by a three-
dimensional mask having kernel size of 3× 3× 3 voxels. A
point was determined as peak position if it was the maximum
of its neighbors determined by the above mask. Only those
peaks were saved that had a greater value than a Tlow ∈ N
global minimum threshold value. Tlow was initially set to
the voxel value associated with 1 SUV. This value could
be changed by the user and it was necessary for runtime
minimization purposes. Based on relevant medical research,
hot spots laid under this value were classified as local noises
[5], [6]. The detected p ∈ N3 peak point coordinates were
stored in a P ⊂

{
N3

}
set.
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C. Initial PET region detection

The segmentation was an iterative process starting from
the maximum count value of the PET (PT max) going until
the above mentioned Tlow value. The number of iterations
was stored in it ∈ N, where it = 2000 was chosen. The
actual Ti threshold value in the ith iteration was determined
by eq. 1.

Ti = PT max −
(
i ∗ PT max − Tlow

it

)
(1)

We performed a region growing in every ith iteration
from all p ∈ P peaks where PT (p) ≥ Ti was true. The
region growing included only those positions into the given
region that were greater or equal than the actual Ti. This
way a simple isocount was determined for all peaks. The
grown region coordinates from a given p peak point at a
given Ti threshold value were denoted by fρ(p, Ti), where
fρ : N3,R →

{
N3

}∗.
During the region grow we recursively checked the 6

neighbors of the given peak. Every grown region was
checked whether it reached a maximum volume which was
stored in MAXv ∈ N. By default MAXv = 50000mm3

was chosen.
A morphological dilation was performed over a fρ(p, Ti)

region by examining the 18 neighbors of its coordinates
[9], [10] (excluding the 8 diagonal corners of the mask).
Positions laid inside of the given dilated hull - not containing
coordinates in fρ(p, Ti) - were denoted by fδ(p, Ti), where
fδ : N3,R →

{
N3

}∗.
We applied an fµ :

{
N3

}∗ → R function which deter-
mined the mean values of PT laid on coordinates located in
a C ⊂

{
N3

}∗ set as defined by eq. 2.

fµ(C) =
∑
c∈C

PT (c)

|C|
(2)

We calculated the γp
i ratio of a fρ(p, Ti) region mean and

its fδ(p, Ti) hull mean as defined by eq. 3.

γp
i =

fµ(fρ(p, Ti))

fµ(fδ(p, Ti))
(3)

We needed the γp
i ratio value because we wanted to log

those ratio - threshold pairs where the given ratio was larger
than any previously logged ratios. We assumed that logging
these value pairs would aid us to choose that particular
threshold for the given region which had the highest ratio
value. We denoted the log set of a p ∈ P peak by Lp ⊂
{(R,R)}∗. If the actual γp

i was larger than any older logged
γp
j where j < i then the actual (γp

i , Ti) pair was stored in
Lp.

After the iterative process had finished, we had the log
set of (γ, τ) ∈ Lp pairs for all p ∈ P peak points. We
determined the final Rp ⊂

{
N3

}∗ region coordinates for all
p ∈ P peak points by eq. 4.

Rp = fρ

(
p, argmax

τ

(
γ|(γ, τ) ∈ Lp

))
(4)

TABLE I
ALGORITHMIC STEPS OF THE INITIAL PET REGION DETECTION STEP

1 ∀1 ≤ i ≤ it :

2 determine Ti by eq. 1
3 ∀p ∈ P |PT (p) > Ti :

4 determine the region of p by fρ(p, Ti)

5 determine fδ(p, Ti)

6 determine γp
i by eq. 2.

7 if γp
i > argmax

γ
(γ|(γ, τ) ∈ LP )

8 Lp = Lp ∪ (γp
i , Ti)

For detailed explanation of the PET lesion detection algo-
rithm see Tab. I.

D. PET region post-processing

The result of the above algorithm required three post-
corrections: handle regions that were equal, handle regions
having intersection, and handle too small regions.

Equal regions typically appeared when some nearby re-
gions converged to the same threshold value and hence they
became equal. This situation appeared when the given lesion
had a lot of local maxima positions that were independently
located and handled by our method. Obviously, this case
resulted redundant regions, hence all of them except one were
classified as false regions.

The second case appeared when e.g. an Rl region (l ∈ P )
converged to a threshold value in such a way that it included
other nearby regions as well. According to the specification
of physicians, it was desired to separate these regions. We
checked whether a smaller Rs region (where s ∈ P ) had
a larger γ than the larger Rl region had. If this condition
met, we iteratively increased the threshold value of Rl

according to its logged τ threshold list until the regions
became independent. We performed this check for all regions
until there were regions having intersection.

For detailed explanation of the first two post-processing
steps see Tab. II.

As the last step of the post-processing, all regions were
classified as false ones if their volume was smaller than
MINv ∈ R value. According to initial trials we chose
MINv = 100mm3 as a minimum volume, which was
slightly larger than the area of one PET voxel. For results of
current step see Fig. 1.

The final post-processed regions were denoted by Rq ⊂{
N3

}∗
for all q ∈ Q peaks. Q ⊆ P was the set of those

peaks whose region was classified as a true one.

E. CT based fuzzy affinity map generation

Our strategy was to generate four fuzzy affinity maps for
lungs, fat, muscle and bone respectively [11], [12]. These
maps were necessary to decide whether a detected PET nod-
ule laid inside of the lungs or not. Due to the presence of the
heart, fat and muscle Hounsfield valued regions were present
between the lungs. These regions were quite similar to the
respiratory tracts and the bronchial tree as well. Due to these
reasons, simple Hounsfield unit based threshold techniques
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Fig. 1. Left: Maximum Intensity Projection (MIP) view of the original
PET volume. Top right: Merged regions before the post-processing step.
Bottom right: Result of the region intersection correction.

TABLE II
ALGORITHMIC STEPS OF THE PET REGION POST-PROCESSING STEP

1 ∀p ∈ P :

2 ∀q ∈ P |q ̸= p:
3 if Rq = Rp :

4 classify Rq as false region
5 else if Rq ⊂ Rp :

6 if
(
max
γ

((γ, τ) ∈ Lq) > max
γ

((γ, τ) ∈ Lp)

)
:

7 R̂p = Rp

8 while R̂p ∩Rq ̸= ⊘ :

9 Lp = Lp \ arg max
(γ,τ)

(γ|(γ, τ) ∈ Lp)

10 R̂p = fρ(p, argmax
τ

(γ|(γ, τ) ∈ Lp)

11 Rp = R̂p

would not have been relevant. Furthermore, threshold would
classify lung regions as air regions outside of the body and
vice versa. Additionally, ribs covered the lungs from the outer
direction of the body, hence bones had to be separated as
well.

We wanted to compare the four fuzzy affinity maps to
one another instead of operating with one lung affinity map
and its corresponding threshold value. Based on initial trials,
the latter solution would not have been accurate, since a
threshold value of an affinity map would have changed in
every patient images. Nevertheless, comparing four fuzzy
affinity maps at common positions could lead us to a safer
decision since their relative values could clearly describe the
given tissue/organ type.

1) Adaptive fuzzy segmentation framework: We used the
adaptive fuzzy approach proposed in [11], [12]. This tech-
nique required seed points to generate a fuzzy affinity map
having real values between 0.0 and 1.0.

2) Lung affinity map generation: Since the CT images
were Hounsfield corrected, a simple threshold at -200 HU
was enough to separate the air and the body. On the binary
threshed body-air mask the lungs were classified as air
regions and they always had a a connection with the outside
air region due to the esophagus. To close the esophagus,
a three dimensional morphological dilation was performed
with a 3×3×3 kernel four times. According to initial trials,
this amount of dilation always closed the esophagus but also
decreased the region of the lungs. This effect was negligible
for us, since we were seeking for seed points of the lungs, not
their exact shape. Based on the dilated mask the two largest
regions inside of the body were chosen and their center of
gravity was detected as lung seed points. Additionally, a
bounding box over the eroded lungs was determined but its
size was corrected in all 6 directions by 4 voxels to balance
the shrinking effect caused by the four dilation steps.

Based on the seed point pairs the above fuzzy segmen-
tation algorithm was performed and the result affinity map
was stored in CT L image.

3) Fat, muscle and bone affinity map generation: To
generate the fat fuzzy affinity map, we selected a seed point
inside of the body and outside of the bounding box of
the lung. The seed point for the fat was selected from the
Hounsfield unit interval of −100,−90. Muscle seed points
were consequently selected from the value range of 40, 60
and bone seed points were chosen from the middle axial slice
where values were larger than 150. The final fat, muscle and
bone affinity maps were denoted by CT F , CT M and CT B

respectively.

F. PET lung nodule classification

We determined the dilated hull of all Rq valid lesions as
described in section II-D and denoted as Hq = fδ(q, τ)
where τ = max

τ
((γ, τ) ∈ Lq). We determined the mean of

the fuzzy affinity values laid under the coordinates of the
given Hq hull for all four fuzzy affinity maps respectively.
These mean values were consequently denoted as µq

L, µq
F ,

µq
M and µq

B for lung, fat, muscle and bone affinity maps.
The reason of choosing hull coordinates was that lung

nodules normally had non-lung Hounsfield values. Never-
theless, their surrounding CT values laid inside of the lungs.
Hence collecting the mean fuzzy value from the affinity
maps only in the hull coordinates led us to a more accurate
classification.

An Rq region was classified as lung nodule if its µq
L was

maximal among the four mean values. For results of current
step see Fig. 2 and Fig. 3.

G. Validation

The validation was performed in Interview Fusion clinical
evaluation software developed by Mediso where the above
method was implemented. Two nuclear medicine specialists
compared the results of our method to prior medical reports
of our data sets. Our method sorted the classified lung
nodules based on their γ ratio. The specialists could change
the position of a slider which provided a threshold for the
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Fig. 2. Left: Original PET and CT fused in a MIP view. Right: The
segmented lung nodules with the CT in a MIP view.

Fig. 3. Left column: Axial slices of a positive case representing lung
nodules on fused PET-CT views. Right column: Corresponding segmented
lung nodules fused with the CT. Note the necrobiotic nodule on the bottom
images, hence a hole is present in the middle of its mask.

γ values. According to initial trials we set the value of
this slider to 1.6. Those lesions having less values than
the actual ratio threshold were classified as false regions.
We logged the number of γ threshold slider modifications.
Further parameters of the algorithm could be changed by the
specialists as well such as the Tlow, τ , MINv and MAXv.

III. RESULTS

Our method successfully detected 96% of all previously
reported lesions inside of lungs without user interactions.
All of these nodules were previously reported. Additionally
it also detected 5 false negative lesions in overall 3 studies.
No nodules were detected in the 5 negative cases. A fully
automated runtime took average 1 minute per study.

By modifying some parameters we could successfully
detect all 51 lesions in the 26 positive cases. In this case
we could decrease the number of false positive lesions to
1. Modifying Tlow, was necessary 2 times, since some very
low SUV valued benign lesions [1] were missing, although
there was no consensus by the physicians whether these
lesions had to be detected or not. Modification of τ was 5
times necessary, where the size of the region was not exactly

the desired one (although the region itself was detected).
Modifying the ratio threshold slider was 2 times necessary.
These modifications normally took 3-7 seconds, since our
method modified the list of true regions in real-time. No
manual MINv , MAXv modification was necessary.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We have presented a fast and accurate method to auto-
matically detect lung nodules on PET-CT images. According
to the ratio of misclassification manual interventions of our
method, it can be considered to be automated, although in
some cases manual parameter modifications were necessary.
The background ratio based ordering of the lesions seems
to be a logical aid for users. It took average 5-6 minutes
(including manual interventions) to localize nodules in a
patient with our method which is comparable to the necessary
time (60-90 minutes) to perform the manual evaluation.

B. Future Works

Our algorithm will be extended to deal with lymph nodes
and melanoma as well. The four fuzzy affinity maps could
be used for localizing lesions inside of other tissues as well.
Knowing the type of cancer to detect, parameters of the
algorithm could be fine-tuned to the specific needs.

REFERENCES

[1] F. G. Duhaylongsod, V. J. Lowe, E. F. Patz, et al., Detection of primary
and recurrent lung cancer by means of F-18 fluorodeoxyglucose
positron emission tomography (FDG PET), J Thorac Cardiovasc Surg,
vol. 110, 1995, pp. 130-140.

[2] M. Khalaf, H. Abdel-Nadi, J. Baker, et al., Relation between nodule
size and 18F-FDG-PET SUV for malignant and benign pulmonary
nodules, J Hemat Oncol, 2008, pp. 1-13.

[3] A. Grgic, Y. Yueksel, A. Groeschel, et al., Risk stratification of solitary
pulmonary nodules by means of PET using 18F-fluorodeoxyglucose
and SUV quantification, Eur J Nucl Med Mol Imaging, vol. 37, 2010,
pp. 1087-1094

[4] S. Srinivas, A. Cohen, Improving accuracy of PET/CT in the diagnosis
of the solitary pulmonary nodule, J Nucl Med, vol. 49, 2008, pp. 246

[5] Y. Hashimoto, T. Tsujikawa, C. Kondo, et al.,Accuracy of PET for
Diagnosis of Solid Pulmonary Lesions with 18F-FDG Uptake Below
the Standardized Uptake Value of 2.5, J Nucl Med, vol. 47, 2006,
426-431

[6] D. Hellwing, T. P. Graeter, D. Ukena, et al., 18F-FDG PET for
Mediastinal Staging of Lung Cancer: Which SUV Threshold Makes
Sense?, J Nucl Med, vol. 48, 2007, pp. 1761-1766.

[7] F. Hofheinz, C. Poetzsch, L. Oehme, et al., Automatic volume
delineation in oncological PET Evaluation of a dedicated software
tool and comparison with manual delineation in clinical data sets,
Nuklearmedizin, vol. 51, 2012, pp. 1-8.

[8] L. Papp, N. Zsoter, C. Loh, et al., Automated lymph node detection
and classification on breast and prostate cancer SPECT-CT images,
IEEE Conf Proc IEEE Eng Med Biol Soc, 2011, pp. 3431-3434.

[9] R. M. Haralick, S. R. Sternberg, X. Zhuang, Image Analysis Using
Mathematical Morphology, IEEE Tr Patt Anal Mach Int, vol. 9, 1987,
pp. 532-550.

[10] S. Hu, E. A. Hoffman, J. M. Heinhardt, Automatic lung segmentation
for accurate quantitation of volumetric X-ray CT images,IEEE Tr Med
Img, vol. 20, 2001, pp. 490 - 498.

[11] J. K. Udupa, S. Samarasekera, Fuzzy Connectedness and Object Defi-
nition: Theory, Algorithms, and Applications in Image Segmentation,
Graph Mod Img Proc, vol. 58, no. 3, 1996, pp. 246-261.

[12] K. C. Ciesielski, J. K. Udupa, Affinity functions in fuzzy connect-
edness based image segmentation II: Defining and recognizing truly
novel affinities, Comp Vis Img Underst, vol. 114, 2010, 155-166.

4977


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

