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Abstract— In this paper, we extend our published work [1]
and propose an automated system to segment retinal vessel
bed in digital fundus images with enough adaptability to
analyze images from fluorescein angiography. This approach
takes into account both the global and local context and
enables both vessel segmentation and microvascular centreline
extraction. These tools should allow researchers and clinicians
to estimate and assess vessel diameter, capillary blood volume
and microvascular topology for early stage disease detection,
monitoring and treatment. Global vessel bed segmentation is
achieved by combining phase-invariant orientation fields with
neighbourhood pixel intensities in a patch-based feature vector
for supervised learning. This approach is evaluated against
benchmarks on the DRIVE database [2]. Local microvascular
centrelines within Regions-of-Interest (ROIs) are segmented by
linking the phase-invariant orientation measures with phase-
selective local structure features. Our global and local structural
segmentation can be used to assess both pathological structural
alterations and microemboli occurrence in non-invasive clinical
settings in a longitudinal study.

I. INTRODUCTION

Attempts to study the retinal vascular system date back to
the origins of ophthalmoscopy in the 19th century. This is
partly because the microvascular blood flow can be visually
inspected non-invasively, offering a unique opportunity to
study human haemodynamics by examining the ocular circu-
lation. Over the years, clinical and research assessment tech-
niques have evolved from the physical description of selected
retinal arteries and veins to the quantitative measurements of
the associated ocular haemodynamic parameters [3]. These
quantitative parameters, describing the characteristics of reti-
nal vasculature or ocular blood perfusion, can be influenced
by the presence of diseases such as hypertension [4], diabetes
[5] and glaucoma [6]. Any attempt to automate the measure-
ments of these characteristics relies on an accurate system to
segment the retinal vasculature automatically. Over the years,
various methods [7] for retinal vessel segmentation have been
proposed and benchmarked on shared image repositories.
One of such publicly available databases is “DRIVE” (Digital
Retinal Images for Vessel Extraction) [2]. This database
contains images directly acquired from a digital fundus
camera and also contains manual segmentation by different
observers. This captures some of the variability found in
manual segmentation.

Our paper is organized as follows. In Section II, we
introduce our automated segmentation method. We first
construct, in Section II-A, a phase-invariant orientation field
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using steerable wavelet filters that can be used to help
differentiate the vessels from background. In Section II-
B, phase-invariant structural information is combined with
neighbourhood pixel intensities to segment the global retinal
vessel bed. In Section II-C, we combine these phase-invariant
features with pixelwise phase-selective responses to identify
and extract the local microvascular centreline. In Section
III, we present the comparison of our vessel segmentation
algorithm with other benchmark algorithms.

II. SEGMENTATION

Extensive research on vessel segmentation has been pub-
lished. Methods include: Laplacian-of-Gaussian filtering with
binary image morphology [8]; two-dimensional Gaussian
models of vessel intensity space [9]; exploratory vessel
tracing [10], region-growing using Hessian matrix maxima in
Gaussian scale-space [11] and maximum likelihood estimates
from multi-scale Gaussian filter outputs [12]. With retinal
arterioles typically ranging from approximately 20 to 200µm
in diameter [13], the microvascular structures in the scale of
10µm are often visualized by fluorescein angiography alone.
Meanwhile, funduscopy is popular in national eye screening
programmes for diabetic retinopathy. Yet, most algorithms
are developed on either red-free fundus images or fluorescein
angiograms. Thus, there is a need for techniques that take
into account this scale difference between the two image
modalities, yet employ some parameters that are unique and
distinctive enough to classify both the entire vessel bed (red-
free) and the micro-vessel (fluorescein) centrelines.
A. Phase-invariant Orientation Field

The feature that we use is defined in prior works [14],
[15] and [16]. Because red-free and fluorescein images have
opposite contrast behavior, this approach compactly encodes
the neighbourhood phase-invariant structural orientation and
spatial symmetry estimate. It also shares some benefits of the
scale-space approach as the filter scale selection is automated
to be “scalable” to the local vessel diameter. This tuning
takes the form of a weighting applied to each scale of the
filter output, based on the likelihood of that filter scale being
well matched to the local vessel size. In-depth discussion
and application of “steering in scale” and “detecting intrinsic
scale” in a more generalized setting can be found in [16].

The phase-invariant orientation field is a representation
of local image structure that is relatively discriminating,
yet stable in the presence of illumination change. It may
be thought of as a quasi-illumination invariant estimation
of local structure orientation, independent of local spatial
symmetry about a selected dominant axis (see Figure 1).
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Fig. 1. Estimated phase-invariant orientation field (in red) of a 128×128
patch from a retinal fluorescein angiogram with 3D view (top) and detailed
2D view (bottom).

It is constructed as:
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for g(l)k (x,y) where k = 0,1,2, ..., K
2 -1 denotes the output of

the kth oriented bandpass complex analysis filter from image
f at level l. For K = 8, we use four direction vectors ~u =
{[1,0], [0,1], [-1,0], [0, -1]}. Note the double-angle nature of
these direction vectors relative to the single-angle directional
filter kernels (see Figure 2).

p is a conditioning constant set at 1.25% of the maximum
value of the image [15]. As the magnitude of the phase-
invariant orientation field

−→
O (l)(x,y) ranges from 0 to 1, it

can be used as an indication of anisotropy, in which strongly
isotropic neighbors will produce values near to 0 and strongly
anisotropic neighbors will produce values near to 1.

Our set of four 15 × 15 complex “Steerable Wavelet
Filter” (SWF) arrays can be visualized in Figure 2.

Fig. 2. Real and imaginary parts of oriented complex bandpass filter
kernels used to produce the filter outputs in the spatial domain.

B. Vessel Segmentation

Niemeijer [2] proposed a supervised pixel classifica-
tion method such that for each pixel in the image, a
31-dimensional feature vector is constructed and a kNN-
classifier is trained with these feature vectors. Their study

also showed that the kNN-classifier performed better than
a linear or a quadratic classifier. This architecture first ap-
peared as convolutional neural nets [17] used for recognizing
handwritten characters. We suggest instead a smaller feature
vector that relies on the phase-invariant orientation field over
a local patch, combined with pixel intensities over the patch.
A standard artificial neural network [18] is then trained over a
small sample of labeled pixels to effect the segmentation. We
use a multi-layer feed-forward network with backpropagation
and the Levenberg-Marquardt training algorithm [19]. The
network uses a scaled conjugate gradient descent training
function, a mean squared error performance function, and
hyperbolic tangent sigmoid transfer functions for both hidden
and output layers. Our 27-dimensional input feature vector
is defined as [20]:

−→
FV = [I3×3,

−→
O (3×3)] (2)

Our unique descriptors for segmentation is assembled
as follows: For each pixel, we first assemble its 3 × 3
neighbourhood intensity. We then separate the horizontal
and vertical components of the orientation field vectors, and
assemble the 2×3×3 structural orientation matrix. Note, the
horizontal and vertical components of the orientation vectors
are normalized as a pair against 2D vector magnitudes
to conserve the angular representation at each location in
the neighbourhood. For training, we use randomly selected
patches (similar to a discretized Wiener process) from each
training image and validate the accuracy of the classification
output against manually segmented ground-truth from the
DRIVE database.
C. Centreline Extraction

Methods for line detection, tracing and extraction include
active contours [21], the Hough transform [22] and scale-
space filters (Principal Component Analysis of the Hessian
matrix) combined with region growing [11]. To achieve
subpixel accuracy in centreline positions, Steger [23] used
the Gaussian partial derivative kernels to characterize the first
and second directional derivative of curvilinear structures.
To detect regions of high directional curvature, the scale
of the applied Gaussian kernels is vital for accuracy. If the
standard deviation of the Gaussian kernel is too small, the
vessel centrelines cannot be detected.

We use a “link while extract” piece-wise segmentation
approach that combines the search algorithm with our phase-
invariant orientation field, improving on Steger’s method
[23] that only links “selected” vessel centerline pixels after
extraction. In a neighbourhood Θ(p,r) from image f , the
pixel p = (px, py) locates at the centre of the r× r patch.
Now if, for instance, the local vascular (neighbourhood)
orientation

−→
O (l)

Θ
((x,y) ∈ Θ) at scale l is in the interval

[−π

8 ,
π

8 ], then only the points (px + 1, py + 1), (px + 1, py),
(px +1, py−1) are considered as “locally aligned” pixels.

Meanwhile, we use an additional measure that estimates
local phase for each pixel. This estimate, Ψ(l), is obtained
from the complex wavelet filter outputs steering by the
polynomial functions sp(φ ,k) and sq(φ ,k) on image f [15].
For φ being the angle indicating the direction of

−→
O (l)(x,y):
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p is considered as a “probable” vessel centreline pixel if
its local phase estimate, Ψ(l)(px, py), matches the phase
component of its neighbourhood

−→
O (l)

Θ
. The angular differ-

ence between p and its “locally aligned” pixels determines
whether these neighboring pixels are also likely to be located
along the vessel centreline. The combination of both allows a
soft classification of the centreline (sub)pixel locations. The
Euclidean distance between two neighbouring (sub)pixels is
also calculated as an indicator for the continuity of the vessel.

III. EXPERIMENTS AND RESULTS

Fig. 3. The posterior probability map (“soft decision”) of our SWF-NN
segmentation result using test image 1 (left) and test image 20 (right).

To compare our automatic vessel segmentation tech-
nique with several (8) previously benchmarked methods
[7][2][8][24][11][9][25], we tested our algorithms on the
DRIVE database and adopted the same evaluation protocol:
as suggested in [2], the performance of all algorithms was
only evaluated on the test image set to prevent bias between
supervised and unsupervised vessel segmentation methods.

Figure 3 shows the segmentation results of the global
vessel-bed of two test images. The photographs for the
DRIVE database were obtained from a diabetic retinopathy
screening program in The Netherlands. The 40 images were
acquired using a Canon CR5 non-mydriatic 3CCD camera
with a 45 degree field of view (FOV). Each image was
captured using 8 bits per color plane at 768 by 584 pixels.
The FOV of each image is circular with a diameter of
approximately 540 pixels. The set of 40 images has been
divided into a training and a test set, each with 20 images.

For training, we generated 5 different batches of random
patch from each training image: 4000 pixels (0.89% of total
image pixels), 8000 pixels (1.78%), 12000 pixels (2.68%),
16000 pixels (3.57%) and 24000 pixels (5.35%). Each patch
contains approximately equal numbers of vessel and back-
ground pixels. We compared network models constructed
from training based on 8× 104 pixels, 1.6× 105 pixels,
2.4×105 pixels, 3.2×105 pixels and 4.8×105 pixels.

Figure 4 (top) presents a classic ROC curve across the
entire test image set using our algorithm. Figure 4 (bottom)
demonstrates the algorithm performance from eight different
benchmark methods. Single points on the figure represent
binary segmentation methods. Table I compares the area
under the ROC curve (Az) for non-binary segmentation

Fig. 4. Top: The ROC curves of our SWF-NN algorithm evaluated on the
DRIVE database with different training patch size, incrementing from less
than 1% to around 5% of the total image pixels; Bottom: The ROC curves
of 8 methods tested on the DRIVE database, adapted from [7].

methods. Our “Steerable Wavelet Filter-Neural Network”
(SWF-NN) algorithm achieved 0.9779 for Az.

Method SWF-NN Staal Martinez-Perez Niemeijer

Az 0.98 0.95 0.93 0.93

Method Jiang Zana Chaudhuri Human Observer

Az 0.91 0.90 0.79 n/a

TABLE I
Az COMPARISON FOR 8 SEGMENTATION METHODS

Since poor performance on a single image may be masked
in an ROC curve for an image set, we applied the same
neural network model on each of the 20 test images in the
DRIVE database individually. The ROC for the entire test
data superimposed on the ROC lower and upper bounds (per
image) is depicted in Figure 5.

The results for microvascular centreline segmentation on
sequential fluorescein angiograms were presented and dis-
cussed in depth in our previous publication [1].

IV. CONCLUSION

In this paper, we suggest a patch-based structural approach
for retinal vasculature segmentation. We find that the use of
a relatively simple machine learning algorithm, combining
phase-invariant orientation fields and image patches yield
promising results. We then present a novel pixel-wise ap-
proach for centreline segmentation relying on phase infor-
mation extracted after steering compact complex wavelets
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Fig. 5. Top: The ROC curves for 20 test images using one neural network
model; Bottom: The ROC curves for lower and upper bound, and for the
entire test data.

according to the orientation field; this can be used for
evaluation of joint spatio-temporal registration accuracy and
detection of microvascular occlusion possibly caused by
microemboli [1]. A globally segmented vascular bed with lo-
cally extracted fine-resolution pathological microvasculatures
allows clinicians to carry out longitudinal studies combining
two existing imaging techniques, funduscopy and fluorescein
angiography. This can eventually lead to a more personalized
yet economical solution to monitor and treat patients with
both current and historical medical records. Future develop-
ment will include more extensive validation of the system on
larger amounts of data, real-time performance evaluation and,
in time, incorporation into a stand-alone system for clinical
trials.
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