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Abstract— The level of dexterity of myoelectric hand pros-
theses depends to large extent on the feature representation
and subsequent classification of surface electromyography sig-
nals. This work presents a comparison of various feature
extraction and classification methods on a large-scale surface
electromyography database containing 52 different hand move-
ments obtained from 27 subjects. Results indicate that simple
feature representations as Mean Absolute Value and Waveform
Length can achieve similar performance to the computationally
more demanding marginal Discrete Wavelet Transform. With
respect to classifiers, the Support Vector Machine was found to
be the only method that consistently achieved top performance
in combination with each feature extraction method.

I. INTRODUCTION

Active upper-limb prostheses have been under develop-
ment for several decades with the ultimate aim of restoring
most of the hands original functionality and appearance.
These prostheses are commonly controlled by measuring
original motor commands from the patients stump surface
using surface electromyography (sEMG). Gradually, this
technology has moved from control of a single prosthesis
function, such as “open-close” grasp, to multifunction pros-
theses. Despite these significant technological advancements
and commercial availability, acceptance among amputees
has been found to be lacking [1]. Reasons for this include
difficulty in controlling them and an insufficient level of
dexterity for daily-life tasks.

Recent developments in mechatronics and robotics have
demonstrated that mechanically dexterous prostheses are not
only feasible, but also available on a commercial level
(e.g., Touch Bionics’ i-Limb). It follows that the issue of
insufficient functionality is due primarily to the myoelectric
control, rather than the prosthetic hardware itself. Research
attention to increase acceptance of active prostheses should
therefore focus on extracting relevant information from the
myoelectric signals and subsequent classification thereof in
terms of movement classes. Even though significant work has
already been presented in this direction, it is not clear which
methods are superior in this application domain and whether
these can achieve satisfactory performance. Moreover, em-
pirical validation of these methods is typically restricted to
demonstrating feasibility on a proprietary dataset containing
only a handful of movements acquired from an equally
limited number of subjects.
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We attempt to address this issue by presenting a compari-
son of common feature extraction and classification methods
on the newly acquired and publicly available NinaPro dataset
[2], [3]. A primary advantage of this dataset is that it contains
52 hand movements acquired from 27 healthy subjects. Aside
from producing a direct quantitative comparison of various
popular methods, we also intend to assess whether current
state-of-the-art methods are in fact able to attain satisfactory
levels of performance on this challenging setting. Lastly, the
presented results also form a baseline to measure progress
of future developments in dexterous myoelectric control.

The present paper is organized as follows. Section II
contains a concise overview of related work on feature
extraction and classification methods that have been used for
myoelectric control of prostheses. A representative selection
of these methods form the base of comparison and these
methods are described in Section III. The experimental setup,
including a description of the dataset and configuration
of the methods, is presented in Section IV, followed by
experimental results in Section V. Finally, Section VI draws
conclusions from the results and contains possible directions
for future work.

II. RELATED WORK

There is a vast body of work related to sEMG-based
control of prostheses. Central to these approaches is a com-
mon process that can be subdivided in data acquisition and
preprocessing, feature extraction, and finally grasp, posture
or movement classification. Even though data acquisition and
preprocessing may have a profound impact on final perfor-
mance (e.g., number and position of electrodes, filtering), we
will restrict ourselves to an overview of the representative
literature on feature extraction and classification methods.
The interested reader is referred to a general treatment of
myoelectric prosthesis control [4], [5].

Selection of appropriate features for sEMG signals has
been driven by expert knowledge of the application domain,
such as features capturing a relation to force exerted at
joints [6] or action potentials of motor units participating
in the observed signal [7]. The extraction methods that have
been employed successfully consider spectral and amplitude
properties of the signal and can thus be categorized into
those operating in the time domain (e.g., Mean Absolute
Value, Variance, or Cepstral Coefficients) or frequency do-
main (e.g., Frequency Ratio or Mean Frequency). More
sophisticated types of features may also consider the time
and frequency domains simultaneously, such as in Short-
Time Fourier Transform, Wavelet Transform, or Wavelet
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Packet Transform. Typically, time-frequency domain features
contain richer information about the signal at the cost of
increased computation. Detailed overviews of feature extrac-
tion methods used for sEMG signals can be found in the
work by Zecca et al. [8] and Micera et al. [5].

A number of studies have compared various extraction
methods in terms of clustering criteria [9], [10] or final clas-
sification performance [11], [10], [12], [13]. Unfortunately,
these comparisons most often identified different methods
as best performing. A possible cause for these conflicting
results is the considerable discrepancy in the respective
acquisition protocols and experimental setups. Moreover, ex-
traction methods were typically used with a single classifier,
thereby failing to investigate whether extraction methods
may perform better with some classifiers than with others.

The use of classification methods has mostly been re-
stricted to relatively standard methods, such as Linear Dis-
criminant Analysis [14], [15], [11], k-Nearest Neighbors
[16], Gaussian Mixture Models [13], or Multi-Layer
Perceptrons [15], [11], [12]. More recent work also reports
the use of Support Vector Machines [11], [17], [18]. This ap-
parent disinterest in exploring a broader variety of classifiers
is partially explained by the belief that feature representations
contribute more significantly to the overall performance than
classifiers. This belief is supported by Hargrove et al. [13],
who reported nearly identical results when comparing five
different classifiers [13]. Lorrain et al. found similar perfor-
mance between Support Vector Machines (SVMs) and Linear
Discriminant Analysis (LDA) when using time-domain and
autoregressive features [18]. It should be noted, however,
that other comparisons have in fact found considerable
differences in performance between classifiers [19], [11]. In
this case, conflicting results might be caused by variability
in the experimental setup, since the performance gain of
powerful non-linear classifiers with respect to linear methods
can be expected to increase with problem complexity (e.g.,
number of movements considered).

III. METHODS

The selection of features and classification methods for
the present evaluation is based primarily on popularity in
existing literature, with computational constraints being a
secondary consideration. In total, we have selected seven
feature extraction methods and four classification methods,
which are motivated and described in the following.

A. Feature Extraction

Our choice of feature extraction methods stems from
several assumptions on sEMG: (1) There is a quasi-linear
relation between Root Mean Square (RMS) amplitude of
sEMG signal and force exerted by a muscle [6] subject to
number of conditions, such as thickness of tissue, Motor Unit
(MU) recruitment strategy and so on [20]; (2) sEMG can
be modeled as a summation of Motor Unit Action Potential
(MUAP) trains [7]; (3) sEMG spectral characteristics might
be related to conduction velocity of muscle fibers, subject to
number of conditions [20]. This relation can be indicative of

TABLE I
PER-CHANNEL DEFINITION AND ORDER OF DIMENSIONALITY OVER ALL

C CHANNELS OF THE FEATURE TYPES USED IN THE EVALUATION. THE

FEATURES x̂ ARE COMPUTED FROM SIGNAL x OF LENGTH T AND

SUBINDEXED BY t. B DENOTES NUMBER OF HIST BINS. FOR STFT, WE

CONSIDER M FREQUENCY BINS INDEXED WITH k AND COMPUTED OVER

BLOCKS OBTAINED BY A SLIDING WINDOW FUNCTION g OF LENGTH R.
FOR MDWT, WE USE ψl,τ TO DENOTE THE MOTHER WAVELET WITH

TRANSLATION l AND DILATION τ , WHILE THE TOTAL NUMBER OF

CONSIDERED TRANSLATIONS IS REFERRED TO AS L.

Feature Definition (per channel) Dim.

Mean Absolute Value (MAV) x̂ = 1
T

∑T
t=1 |xt| C

Variance (VAR) x̂ = 1
T

∑T
t=1 (xt − x̄)2 C

Waveform Length (WL) x̂ =
∑T−1
t=1 |xt − xt+1| C

sEMG Histogram (HIST) x̂1:B = hist (x1:t, B) CB

Cepstral Coefficients (CC) x̂k = F−1(log |F(x1:t)|)k CT

Short-Time Fourier Transform
(STFT)

x̂k,t =
∑R−1
m=0 xm−tgme

−i 2π
M
km CMT

marginal Discrete Wavelet
Transform (mDWT)

x̂l =
∑T/2l−1
τ=0

∣∣∣∑T
t=1 xtψl,τ (t)

∣∣∣
ψl,τ (t) = 2−m

2 ψ(2−lt− τ)

CL

recruitment of certain MU, which can help in discrimination
of certain MU activation patterns.

If the first assumption holds, time domain features, such
as Mean Absolute Value (MAV) when treated in multi-
channel setting, could potentially encode profile of move-
ment through force-related measurements. The second and
third assumptions are related to time-frequency domain
feature representations. As a more sensible counterpart of
MAV, we use sEMG Histogram (HIST) [10]. For spectral
analysis, we chose Short-Time Fourier Transform (STFT)
since it is more robust when dealing with non-stationary
signal compared to Fourier transform. As a more elaborate
alternative Wavelet Transform (WT) was employed. MUAP
is often modeled as a waveform with similar shape over time,
which might alter under variable conditions such as electrode
size or its position [20]. WT has been used extensively to
capture localization and energy allocation of MUAP under
condition that MUAP shape match the shape of used wavelet
function as much as possible [14], [21], [18]. As a represen-
tative of WT we chose marginal Discrete Wavelet Transform
(mDWT), since there is no particular interest in wavelet time
instants. Instead, a cumulative energy allocated to wavelets
within some signal segment suggests better discriminative
criterion [21]. On the basis of these considerations, seven
feature representations are considered in this work, five time-
domain features and two time-frequency features. A short
summary for those is given in Table I.

B. Classification

In contrast to feature extraction methods, only a relatively
small set of general purpose classification methods have been
employed for myoelectric movement classification. The four
well-known classifiers considered here have all been used
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previously in related literature and span from simple statisti-
cal methods to more advanced machine learning techniques.

1) Linear Discriminant Analysis: LDA is a well-known
statistical method to find a linear discriminant that maximizes
the ratio of between-class scatter to within-class scatter [22].
The applicability of this method on a given dataset relies
strongly on the assumption that the conditional probabilities
of the features given the class labels are normally distributed.

2) k-Nearest Neighbors: The k-Nearest Neighbors (k-NN)
algorithm classifies samples based on a majority vote among
the k closest training samples [22]. Despite its conceptual
and computational simplicity, excellent performance can be
achieved if sufficient training data is available. A possible
disadvantage in time-critical applications is that all com-
putation is deferred to the testing phase. Furthermore, its
performance is critically dependent on the selection of k and
a suitable distance measure.

3) Multi-Layer Perceptron: A Multi-Layer Perceptron
(MLP) is arguably the most popular type of feedforward
Artificial Neural Network (ANN) [22]. The network is com-
posed of at least three fully interconnected layers, namely an
input and output layer, as well as one or more hidden layers
in between these. Both hidden and output layers consist of
a number of perceptrons (i.e., the “neurons”), which feed
a weighted sum of inputs through a non-linear activation
function. The weights are randomly initialized and subse-
quently optimized during supervised training by means of
back-propagation. Preventing overfitting with MLPs requires
careful selection of the stopping criteria of the optimization
procedure and the number of neurons in each hidden layer.

4) Support Vector Machine: SVMs are linear binary clas-
sifiers that attempt to maximize the margin between the two
classes [23]. Their widespread popularity is due to large ex-
tent to the possibility to use kernel functions. These functions
allow SVMs (and many other algorithms) to be used on
non-linear problems by implicitly mapping the data into a
high or even infinite dimensional feature space. Though the
standard SVM is defined in binary form, it can be used on
multi-class problems by converting these to multiple binary
classification problems. Advantageous properties of either
linear or kernel SVMs include determinism and convexity
of the optimization problem, which effectively guarantees
convergence to a unique global optimum (cf. random initial-
ization and local optima in MLPs). Furthermore, the balance
between overfitting and underfitting can be regulated using a
single trade-off hyperparameter C, which limits the classifier
to a desired capacity.

IV. EXPERIMENTAL SETUP

This section contains detailed descriptions of the dataset,
preprocessing, and configuration of the extraction and clas-
sification methods.

A. Dataset

The NinaPro database has been acquired recently with the
aim to advance the state of sEMG controlled hand prosthetics
by forming a widely accepted benchmark dataset [2]. Aside

from being publicly available1, a primary advantage with
respect to earlier datasets is the comparatively rich set of
52 movements collected from 27 intact subjects. This set of
movements can be decomposed in four different categories,
which are shown graphically in Figure 1. Movement classi-
fication is challenging with this large number and variety of
movements, which makes this dataset ideal for a comparison
of feature extraction and classification methods. Moreover,
the large number of considered subjects allows for a reliable
estimation of classification performance.

During the data acquisition, subjects were explicitly in-
structed to perform ten repetitions of each movement by
imitating a video, while all movements were alternated with
an intermediate rest movement. For the entire duration, data
was recorded at 100Hz from ten active sEMG electrodes,
which already provides an amplified, bandpass-filtered, and
an RMS rectified version of the raw sEMG signal. Eight of
the electrodes were placed uniformly just beneath the elbow
at a fixed distance from the radio-humeral joint, while two
more were placed on the flexor and extensor muscles.

B. Relabeling

The actual time window of the performed movement does
not necessarily correspond perfectly to video duration, since
subjects require time to react to a new video being played
and may finish the movement prior to the end of the video.
In order to reduce this label “noise”, we employ an offline
relabeling algorithm that constrains movement labels to those
samples in which there is increased sEMG activity.

Similar to the onset detection approach by Staude [24], we
remove irrelevant autoregressive components by whitening
the signals using a multivariate VAR(p) model [25]. In our
case, an order of p = 20 was found to perform adequately.
Detection of sEMG activity is restricted to the original video
window extended with an additional 100 samples at the
end, as to allow subjects to finish a movement with 1 s of
delay. The resulting feasible movement window of length T
is then divided in rest-movement-rest segments marked by
change points t0 and t1. The optimal change points are found
by maximizing the log-likelihood of a rest model θ0 and
movement model θ1, corresponding to the objective function

argmax
1≤t0≤T

argmax
t0≤t1≤T

sup
θ0∈Θ0

sup
θ1∈Θ1t0−1∑

i=1

ln pθ0(yi) +

t1−1∑
j=t0

ln pθ1(yj) +

T∑
k=t1

ln pθ0
(yk)

 .

(1)

Simple exhaustive search is adequate for finding optimal
t0 and t1, while θ0 and θ1 are optimized by a maximum
likelihood estimate of a multivariate Gaussian distribution
over the corresponding window segments.

In order to (subjectively) improve the results in practice,
we impose a minimum duration for both the rest (i.e., t0 ≥
10) and movement window segments (i.e., t1 − t0 ≥ 0.3T ).

1http://www.idiap.ch/project/ninapro/
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(a) 12 basic flexions and extensions of the fingers

(b) 8 isometric and isotonic hand configurations

(c) 9 basic wrist movements

(d) 23 grasp and functional movements

Fig. 1. The 52 movements considered in the NinaPro dataset.

Moreover, the straightforward assumption that sEMG activity
is higher during movement is explicitly enforced by requiring
the sample variance s2 to be lower during rest (i.e., s2

0 ≤ s2
1).

This simple condition is effective at preventing erroneous
outcomes in cases where a feasible window is lacking a clear
initial rest. Finally, we impose a prior distribution on any
sample belonging either to rest or movement (i.e., random
variables Ri and Mi). This prior is chosen uniformly as
p(Ri) = 0.1 for 1 ≤ i ≤ T , and due to mutual exclusivity
p(Mi) = p(¬Ri) = 1 − p(Ri). The effect of this prior
is that the algorithm will identify slightly larger movement
windows, which helps to ensure that the entire sEMG activity
is captured in the movement segment.

C. Preprocessing and Data Split

Since collected sEMG signals are RMS pre-filtered during
data acquisition [2], valuable information is contained within
the low frequency spectrum band. To remove high-frequency
equipment noise components we applied 2nd order 5Hz
low-pass zero-phase Butterworth digital filtering at each
channel. Filtering of similar configuration was carried out
by Castellini et al. [17], where signals were recorded by a
similar acquisition setup. After filtering, each signal channel
is segmented into windows. Windows of length 100ms,
200ms and 400ms with N−10ms overlap are considered,
where N is the window length in milliseconds2. Note, that
N−10ms is simply one-sample sliding window, taking into
account signal sampling frequency.

Subsequently, the dataset is split equally into training
and testing set at the 50% ratio. Splitting is performed at
the level of rest-repetition pairs, meaning that 5 repetitions

2In addition, we tried to conduct experiments with 800 ms window with
no noticeable increase of performance.

with preceding rest segments are included in the training
set while another 5 are kept for the testing set. Among
multiple random splits considered by Atzori et al. [2], we
chose a split yielding an accuracy as close as possible to
the average one. Namely, training indices are {1, 3, 4, 5, 9},
while testing are {2, 6, 7, 8, 10}. After splitting, the training
set is reduced by keeping every 10th sample to achieve a
computationally feasible training set. Note, that from the
standpoint of windowing this equates to sampling windows
with N−100ms overlap. On the other hand, testing set over-
lap exploits all available testing data by selecting windows
in a one-sample sliding window manner. Eventually different
parameterizations yield ≈ 2.5 · 104 and ≈ 2.5 · 105 samples
in training and testing set per subject.

D. Method Configuration and Implementation

The features described in subsection III-A are extracted
from each window independently for each electrode channel.
Based on preliminary evaluation runs, we selected a 4-sample
rectangular window for STFT. Furthermore, for mDWT we
used a Symlet wavelet function of order four at the first
three levels and first five coefficients for Cepstral Coefficients
(CC). Finally, we used a 10 bin sEMG Histogram computed
over a logarithmic scale, where a small constant is added to
avoid −∞ sample values. Apart from these, other features
do not require any explicit parametrization.

Each feature representation is combined with the four
classifiers described in section III, although an exception is
made for LDA. Due to computational issues (i.e., a singular
covariance matrix), LDA could not be evaluated with the
high dimensional feature representations (i.e., STFT, CC,
and HIST). For the remaining classification methods, the
extracted features are standardized to have zero mean and
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unit standard deviation. During a preliminary evaluation
standardized data resulted in better accuracy. The exception
is LDA, for which standardization was not applied, due to
singular covariance matrix issue.

We use SVM with Radial Basis Function (RBF) and linear
kernels in one-vs-one multiclass classification setting, MLP
with one hidden layer and sigmoid activation function, k-NN
with Euclidean distance measure and LDA with no specific
configuration. We chose linear SVM kernel to investigate the
robustness of linear discriminative model on extracted feature
set, while RBF kernel is dedicated to non-linear classification
boundary modeling. MLP, k-NN and LDA are presented in
most canonical configurations.

The mentioned classifier configurations span hyperparam-
eters, which are tuned for each subject by grid search.
At each grid point, 5-fold cross-validation is performed
on the 10% random sample of the training set. During
grid search we consider non-linear SVM C ∈ {2i :
i ∈ {0, 2, ..., 14, 16}} and RBF γ ∈ {2i : i ∈
{−16,−14, ...,−4,−2}}, linear kernel SVM C ∈ {2i :
i ∈ {−10,−8, ..., 14, 16}}, MLP hidden unit number
in {4, 8, 16, 32, 64, 100, 150, 200, 250, 300, 400} and k-NN
with k ∈ {1..7}. The exception is MLP, for which, instead
of cross-validation, the original training set is split into
90%/10% training/validation sets, and optimized with early
stopping to avoid overfitting. The early stopping criterion is
set as 20 consequent decreases of accuracy on the validation
set. The maximum number of MLP optimization iterations
are set to 1000 and optimized with error back-propagation
by scaled conjugate gradient descend [26].

To solve the SVM optimization problem with RBF kernel
we have used LibSVM [27], and LibLINEAR [28] for linear
kernel, since LibLINEAR is more efficient in solving linear
model optimization. The MLP optimization problem was
solved by NetLab toolbox [26]. For LDA we have used
Discriminant Analysis Toolbox 3. k-NN was evaluated using
MATLAB Statistics Toolbox implementation.

V. RESULTS

We present evaluation results in three perspectives: clas-
sification accuracies for a given method and feature repre-
sentation, movement classification accuracy over normalized
time and misclassification analysis by confusion matrices.
Finally we make a comment on evaluation timings.

Classification accuracies for the methods considered in
Section III-B with respect to the feature representations
described in Section III-A under configuration outlined in
Section IV are summarized in Figure 2. Given this, the
best performing combinations are SVM with RBF kernel,
MLP, and k-NN in conjunction with MAV, HIST, mDWT,
and STFT features. The good performance of non-linear
classifiers might be due to the non-linearity of the problem;
this seems confirmed by the poor performance obtained
by linear models (linear kernel SVM and LDA). In some

3http://www.mathworks.com/matlabcentral/
fileexchange/189-discrim

cases, the performance obtained using the MAV and mDWT
features is found to be statistical significant (p ≤ 0.05,
sign test) with respect to some classifiers and windows
lengths, but in most cases those yield insignificantly different
accuracies.

To give a general view on the misclassification profile with
respect to individual movements, we present in Figure 4 the
confusion matrix for the mDWT features combined with the
non linear SVM. Clearly, the diagonal components suggest
that the classifier is mostly consistent in giving correct
predictions. On the other hand, the non-clear first column
strongly points out that a considerable number of movements
are misclassified as rest (absence of movement). To our
understanding, this might occur for possible reasons:

• Due to the windowing of a signal, non-rest labeled
windows can include both rest and non-rest samples.
This might aggravate misclassification rate specifically
during the initial period of the movement. Feature-wise
this means that, although a sequence of windows might
be tagged with the same movement label, in reality these
windows can contain portions of rest signal.

• In this work we consider movements rather than stand-
alone postures or grasps. This introduces the problem
of label semantics, since rest-to-movement segments
can be attributed neither to rest, nor to movement.
Relabeling of the dataset, explained in Section IV-
B, reduces the amount of clearly mislabeled samples,
but cannot resolve the problem of ambiguous labels.
This issue of transitional segments was also mentioned
in [14], [11], [12], and usually “solved” by ignoring
transitional segments between movements.

Apart from that, an off-diagonal scatter can be observed.
Although magnitudes of individual off-diagonal scatter ele-
ments are small (≤ 10%), when marginalized over rows, they
can account for reasonable misclassifications in general. One
of the reasons can be an inability of the feature representa-
tion to capture sufficient discriminative information. Another
is the lack of relevant physiological information acquired
during recording sessions.

Having in mind a transient signal, it is of interest to
investigate whether different features react to transitional
windows in different ways. To explore these discrepancies,
a movement time-normalized accuracy plot is presented in
Figure 3. An increase of performance can be observed as
movement windows contain progressively less transitional
samples. As the number of transitional samples increases
towards the end of the movement, performance deteriorates.
In some cases, longer windows result in better performance at
the central part of the movement and onwards. This suggests
that the window length has little effect on the discrimination
of transitional segments and the following movement. It also
should be noted that at the start of each movement the
considered features suffer from rest and rest-to-movement
transitional segment history. This is evident from the steep-
ness at the beginning of each curve. MAV showed to be
more robust to this kind of misclassifications as compared to

4935



MAV mDWT HIST WL STFT VAR CC
40%

60%

80%

100%
A

cc
ur

ac
y

SVM (RBF) MLP k-NN SVM (linear) LDA 100ms 200ms 400ms

Fig. 2. Classification accuracies. Each bar represents method classification accuracy with respect to feature representation and window length, while line
atop the bar is one standard deviation of accuracy. Classifiers are grouped by feature representations and labeled by different colors. Window lengths are
represented in increasing order, namely 100ms, 200ms and 400ms and are tagged with different textures. Note, that LDA results are missing in case of
STFT, CC and HIST due to reasons described in Section IV.
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Fig. 3. Classification accuracy with respect to normalized movement
duration. Each curve follows a histogram, where each bin represents
ratio of correct classification counts to total number of samples within
considered bin. Ratios are averaged over all subjects and movements, while
keeping duration normalized, meaning that number of bins is equal for
all movements. Each curve corresponds to evaluation by SVM with RBF
kernel with respect to Mean Absolute Value and marginal Discrete Wavelet
Transform features at windows of length 100ms, 200ms, and 400ms.

mDWT. On the other hand, mDWT demonstrates an overall
accuracy improvement at the center of a movement, when
the number of relevant samples within a window increases.

Finally, we would like to give an approximate estimate of
the runtime of some algorithms in conjunction with feature
extraction methods. It is impossible to give precise timings,
since the tasks were distributed over a computing grid,
spanning a variety of machine configurations. Therefore the
average of those should give an idea of the computational
requirements. SVM gives the best trade-off between effec-
tiveness and efficiency: computing results for one subject
with feature extraction and hyperparameter tuning took on
average 15 minutes for MAV, 50 minutes for mDWT, and
from 40 to 160 minutes for STFT, depending on the window
length. MLP is more demanding, which resulted in 240
minutes in case of MAV and mDWT, and up to 350 minutes
in case STFT. Finally, k-NN in standard implementation
suffers from extreme computational effort growth with the
increasing dimensionality of the data. For MAV it took k-NN
on average 10 minutes to complete, while for mDWT this
increases to 40 minutes and, finally, up to 500 minutes for
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Fig. 4. Confusion matrix for the SVM classifier with mDWT feature
representation and 400ms window length. Each cell represents prediction
accuracy of row-indexed class. First class is a rest, i.e. absence of movement.
Thus, correct predictions would result in clear left-top to right-bottom
diagonal, while off-diagonal cells are indicative of misclassifications.

STFT. Highest prediction time for SVM/MAV pair amounted
to 600 s for complete testing set.

VI. CONCLUSIONS

In this work we have conducted a benchmark evaluation
of a large-scale surface electromyography dataset, containing
52 different movements collected from 27 subjects. Prior to
evaluation, we introduced a relabeled version of the dataset
by correcting rest and movement transition time points. Four
classifiers previously used in the sEMG community were
evaluated for each subject with respect to seven well-known
sEMG features and three different window lengths. None
of the classifier-feature-window combinations exceeded an
80% classification accuracy on average, but approached it
sufficiently close.

The evaluation reveals a considerable superiority of non-
linear classifiers (e.g., Support Vector Machine) over linear
classifiers (e.g., Linear Discriminant Analysis). On the other
hand, in most cases no considerable difference has been
noticed between time domain and time-frequency domain
features given the best performing classifiers. Accuracy anal-
ysis over the movement duration indicated poor performance
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during transitional movement segments at the beginning and
the end of each movement, with only slight differences with
respect to different features. Class-wise misclassification
analysis pointed out that classification is mostly consistent
in predictions, although priority in improvement should be
given to rest and movement misclassifications, as these are
mostly confused.

Evaluation timings on testing set suggest, that SVM might
be considered as a predictor for use in real-time systems.
The hint comes from prediction time per sample of ≈ 2.4
ms, which is lower than acquisition rate of sample in 10 ms.

Summarizing effectiveness, efficiency, and method tuning
experience, we conclude that SVM is the most suitable
classifier for the task at hand. In comparison, MLP requires
intricate parameter tuning to achieve comparable perfor-
mance, such as setting the number of iterations, stopping
condition, or network configuration. k-NN suffers from the
“curse of dimensionality”, furthermore it requires all training
data during testing, which might be impractical in real-life
settings. Linear models such as SVM with linear kernel and
LDA yield unsatisfactory accuracy.

A. Future Work

The obtained results are admittedly far from what can be
considered usable in real-life settings, but on the other hand
they clearly suggest challenging tasks in both myoelectric
control and machine learning perspectives. It is likely that
to tackle the challenges at hand, novel machine learning or
feature extraction methods will have to be introduced. That
said, the presented work gives a good baseline for future
comparisons on the NinaPro dataset.

A number of directions can be addressed in future work,
namely: (1) improving performance of per-subject classifica-
tion by combining features or introducing new features; (2)
assessing the possibility of inter-subject models, meaning,
the same model capable of classifying movements from
multiple subjects; (3) adaptive control, allowing rapid intro-
duction of new movements and new subjects by exploiting
information from already trained models; (4) collection of an
extended dataset, possibly with an altered acquisition setup
given conclusions based on the current dataset.
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