
  

 

Abstract— In this paper, we report an experimental 

comparison of dynamic support vector machines (SVMs) to 

dynamic neural networks (DNNs) in the context of a system for 

detecting dyskinesia and tremor in Parkinson’s disease (PD) 

patients wearing accelerometer (ACC) and surface 

electromyographic (sEMG) sensors while performing 

unscripted and unconstrained activities of daily living.  These 

results indicate that SVMs and DNNs of comparable 

computational complexities yield approximately identical 

performance levels when using an identical set of input 

features. 

I. INTRODUCTION 

HE management of neuromuscular disorders such as 

Parkinson’s disease (PD) requires individualized 

treatment plans adjusted by the clinician in response to 

the movement disorders experienced by the patient on a day-

to-day basis. To that end, patients typically fill out diaries or 

questionnaires detailing the type and severity of movement 

disorders experienced. However, patient self-reporting of 

movement disorders typically does not correlate well with 

expert annotations in a clinical environment. It has been 

reported that the correlation of these diaries with expert 

annotations can be as low as 0.49 and as high as 0.74 [1]. 

The use of a system based on wearable sensors, therefore, 

has been proposed as an alternative to patient self-reporting 

that would allow for the objective monitoring of movement 

disorders experienced by PD patients in an unintrusive 

fashion. 

In our previous work [2], we have developed a system to 

recognize multiple important movement disorders associated 

with PD — including tremor [3] and dyskinesia [4] — using 

dynamic neural networks (DNNs).  The DNNs take as input 

features from a conveniently small number of hybrid sensors 

worn by the patient as he or she performs unscripted and 

unconstrained activities of daily living. Each sensor, 

depicted in Fig. 1, acquires and wirelessly transmits three 

channels of triaxial accelerometer (ACC) data and one 
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channel of surface electromyographic (sEMG) data, all 

sampled at 1 kHz (with appropriate anti-aliasing filtering). In 

order to improve the practicality and convenience of our 

system, we have trained the DNNs used by our system to 

detect tremor and dyskinesia based on input features 

collected from only one ACC and one sEMG sensor placed 

on the limb of interest.  

The DNN-based system has many important qualities that 

make it superior to previously reported systems. Firstly, it 

can detect movement disorders in the presence of unscripted 

and unconstrained activities of daily living. In contrast, 

previously reported systems restricted the patients to the 

performance of standardized activities meant to elicit 

evidence of the desired movement disorders [5]. 

Additionally, in contrast to previous systems, it requires no 

subject-specific training – that is, no additional training is 

needed for our system to recognize movement disorders in 

data collected from new subjects. Furthermore, the temporal 

resolution of our system is significantly greater than that of 

previously reported systems [6].  However, the DNN-based 

system’s performance degrades in certain instances, and it is 

of interest to determine if replacing DNN technology by 

SVM technology could lead to improved performance.  

II. PREVIOUS WORK 

Our system decides, on a per-second basis, if the 

movement disorder of interest is present based on features 

calculated from the ACC and/or sEMG signals and fed as 

input into a dynamic neural network [7]. This decision is 

compared to expert annotation derived from video taken of 

the patient during the sensor data regions of interest. The 

annotation produces a ―ground truth‖ as to the presence of 
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Fig. 1. (a) One of the wireless sensors used by our system. The sensor 

collects three channels of data from a triaxial accelerometer and one 

channel of surface electromyographic data. (b) A PD patient wearing one 
sensor on each limb (as indicated by the arrows) during testing in an 

apartment-like setting. 
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each disorder on a per-second basis, and was created under 

the supervision of an expert clinician. 

The most basic way to describe the rate of discrepancies 

between the annotation and the system output is in terms of 

the sensitivity and specificity. Sensitivity depends on the 

number of true positives (intervals where the system 

correctly declares the disorder present) and false negatives 

(intervals where the system declares the disorder absent 

while the annotation declares it present). In contrast, 

specificity depends on the number of true negatives 

(intervals where the system correctly declares the disorder 

absent) and false positives (intervals where the system 

declares the disorder present while the annotation declares it 

absent). 

From these basic statistics, we have developed [8] 

additional criteria to measure the performance of our 

movement disorder recognition solutions. The global error 

rate (GER) is defined as the average of sensitivity and 

specificity, and can be thought of as the error rate computed 

over a normalized set of testing data such that the number of 

seconds where the disorder is present equal to the number of 

seconds where the disorder is absent. 

 
      

           

 
 (1)  

However, achieving an acceptable error rate overall does 

not mean that all decisions made by the system are credible; 

poor performance in the presence of a specific class of 

voluntary movement will manifest in dense groupings of 

errors (i.e., false alarms or missed recognitions) over a 

certain interval. Thus we need an additional error rate — 

which we call the local error rate (LER) — to measure the 

performance of our recognition solutions in such ―worst-case 

scenario‖ intervals. Because we are primarily interested in 

reducing the number of regions with dense errors, we will 

use as our figure of merit the proportion of 30-second 

intervals with an error rate of at least 50%. This proportion 

is what we refer to as the LER. 

The performance of our DNN-based system is given in 

Table I in terms of both GER and LER for both tremor and 

dyskinesia as detected in the dominant arm. The 

performance is measured both overall and conditionally 

based on the presence of certain movement states (e.g., 

standing, walking). We can see that, although the system 

produces acceptable global and local error rates overall, it 

does not perform equally well across all movement states. 

For example, the recognition of dyskinesia in the presence of 

walking has a conditional GER of 12.6%, due largely to a 

high number of false alarms. Furthermore, nearly 11% of the 

30-second intervals in which the subject walks have a high 

error density, as denoted by the LER. This suggests that 

during walking our DNN-based system sometimes has 

difficulty distinguishing intervals with dyskinesia from 

intervals without dyskinesia. 

In addition to our previous work, several other research 

groups have proposed systems to monitor individual 

disorders, relying in part on the patient’s performance of 

scripted activities or standardized tests. However, these tests 

may interfere with the patient’s ability to carry out activities 

of daily living. Our system, by entirely avoiding the use of 

scripted activities and standardized tests, represents an 

important improvement over the existing state of the art.  

Support vector machines (SVMs) were used by Patel et al. 

[6] to recognize both tremor and dyskinesia throughout the 

whole body from uniaxial ACC sensors. In this study, 

patients performed standardized tests specifically used by 

clinicians to elicit and assess movement disorders; the SVMs 

declared whether the disorders were present on the basis of 

features calculated over the entire 30-second duration of the 

test. They reported error rates of 2% for both tremor and 

dyskinesia. This study relied on the use of subject-dependent 

training to develop the SVMs; using subject-independent 

training would simplify the process of adapting the system to 

new patients. 

While several previous papers have focused on the use of 

ACC sensors to recognize movement disorders, the 

applicability of sEMG sensors to the recognition of 

movement disorders is a more recent development. Recent 

research by Palmes et al. [5] utilizes sEMG sensors to 

recognize tremor in PD patients. Through the use of an 

ensemble of several cooperating SVMs, Palmes’ group was 

able to distinguish scripted activities performed by PD 

patients from those performed by healthy controls with an 

error rate of 2% using subject-independent training. 

However, this algorithm does not produce per-second 

resolution of tremor, producing one decision as to the 

presence of tremor per scripted activity. The algorithm also 

does not distinguish dyskinesia from tremor, having been 

applied only to patients experiencing tremor. 

III. SUPPORT VECTOR MACHINES 

First developed in 1995, SVMs [9] are a relatively new 

and increasingly popular machine learning approach. As 

with neural networks, support vector machines aim to divide 

the given feature space through the use of generalized 

decision boundaries known as hyperplanes. However, 

whereas a neural network attempts to find a suitable 

hyperplane through iterative procedures such as the gradient 

descent method [10], the support vector machine defines a 

linear programming problem to find the optimal hyperplane.  

In order to ensure the best possible generalization to new 

data, we would like to maximize the distance between the 

hyperplane and any training patterns. This distance is known 

TABLE I 
DNN-BASED TREMOR AND DYSKINESIA DETECTION IN THE ARM 

Movement State 
Tremor Dyskinesia 

GER LER GER LER 

Sitting 4.8% 0.23% 6.4% 1.6% 

Standing 8.9% 0.19% 6.7% 3.9% 

Walking 4.9% 0.18% 12.5% 10.9% 

Total 6.2% 0.20% 8.7% 5.2% 

 GER and LER by movement state achieved by our DNN-based 

recognition system over the entire testing database. The LER column 

represents the percentage of all 30-second intervals in the testing 

database with an error rate greater than or equal to 50%.  
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as the margin, and is represented in the diagram by  . Our 

optimal hyperplane      , defined according to             
       satisfies the inequality 

         

      
             (2)  

over all training patterns   for the largest possible value of 

the margin  . Here       , depending on the class of the 

 th training pattern. The training patterns for which 
        

      
   are known as the support vectors. 

But even an optimal hyperplane will not be able to 

perfectly solve a non-linearly separable problem. Whereas 

neural networks avoid this problem through the creation of 

multiple hyperplanes, support vector machines use nonlinear 

mappings to represent the training patterns in a higher 

dimensional feature space through the use of a transform 

function      . Different transform functions, including 

polynomials, sigmoids, and radial basis functions, can be 

used according to the distribution of the training patterns in 

the feature space. 

It can be shown [11] that appropriate selection of this 

transform function can produce a linearly separable feature 

space for any data set. Once this has been achieved, the 

optimal hyperplane       is now defined as 

                       (3)  

where        and           is the inner product kernel of 

the transform function      ,                 
         

The selection of the SVM kernel function, as well as its 

associated parameters, is dependent on the feature space of 

the problem and can be found through cross-validation. The 

kernel function and parameter values that perform best on 

the cross-validation data are then used in training. Once this 

selection has been performed, the goal of training is to find 

the weights      and bias   that correctly classify all of the 

training sequences    while maximizing the margin   

between the hyperplane                  and the support 

vectors   . We consider a segment to have been correctly 

classified if                    where            is the 

label associated with the  th training sequence.  

Once the hyperplane has been established, it can be used 

to classify any given sequence    according to the decision 

function 

 

                    

 

   

  (4)  

where      is the kernel function, and   is the number of 

support vectors     [12]. The support vectors are defined as 

the training sequences which satisfy the relationship 

       
               

The resulting SVM is static, in that the decision for any 

time   relies only on the features of the data centered at time 

 . As previously discussed, we desire the use of dynamic 

classifiers in order to improve recognition of the time-

varying movement disorders. To that end, we have designed 

and implemented dynamic support vector machines [13]. In 

a DSVM, input features are taken not only from the window 

centered at the decision point   but also from adjacent 

decision points. Thus, the DSVM is dynamic in terms of the 

time-dependency of its input features; the SVM itself, once 

trained, remains constant across all data. Training and 

testing of the dynamic algorithm is performed in the same 

way as training and testing of the static algorithm.  

IV. EXPERIMENTS 

This section describes the experiment we designed to 

compare the performance of our previous DNN-based 

system to that of the DSVM-based system. As with our 

DNN-based systems, we have designed two separate 

DSVMs, one to detect the absence or presence of tremor on 

a per-second basis, and the other to detect the absence or 

presence of dyskinesia on a per-second basis. Each DSVM 

was kept comparable to the DNN designed to detect the 

same movement disorder insofar as the same training and 

testing data were used in development. In addition, the same 

number and type of feature transformations were used by 

both the DNN and DSVM.  

A. Feature Selection 

The sEMG and ACC signals collected from the wearable 

sensors are first passed through a two-second rectangular 

window. Various features are then extracted from the 

windowed sections of the sEMG and ACC sensor signals 

[2]. In all, eight features are calculated, briefly defined as 

follows: (1) energy of ACC signal after lowpass filtering 

(LPF) with a cutoff frequency of 1 Hz, (2) energy of ACC 

signal after highpass filtering (HPF) with a cutoff frequency 

of 1 Hz, (3) energy of ACC signal after additional HPF with 

a cutoff frequency of 15 Hz, (4) lag of first peak (not at 

origin) in autocorrelation of highpass ACC signal, (5) ratio 

of height of first peak (not at origin) to height of peak at 

origin in autocorrelation of highpass ACC signal, (6) energy 

of sEMG signal, (7) lag of first peak (not at origin) in 

autocorrelation of sEMG signal, provided significant peaks 

also exist at integer multiples of that lag, and (8) ratio of 

height of first peak (not at origin) to height of peak at origin 

in autocorrelation of sEMG signal, provided significant 

peaks also exist at integer multiples of the first peak’s lag.  

These features were chosen because of their ability to 

capture specific qualities of the signal that can be used to 

differentiate between the movement disorders. Subsets of 

these eight features are used as inputs to the machine 

learning classifiers (i.e., DSVMs and DNNs) that recognize 

the presence of each disorder. The outputs of these 

classifiers are in turn used in the signal understanding sub-

system to identify the presence of tremor and dyskinesia. 

B. Training and Cross-Validation 

Our development of the DSVM solutions began with the 

selection of appropriate kernel functions and optimal 

parameters for the detection of both tremor and dyskinesia. 

The parameters to be optimized vary according to the choice 
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of kernel function; in the case of a radial basis function, 

parameters to be selected include the width of a scale factor 

γ, and the misclassification trade-off factor C that controls 

the trade-off between maximum margin and minimum 

training error.  

We trained our DSVM solutions on the identical training 

data used to develop our DNN solutions with a variety of 

different kernel functions, specifically linear, polynomial, 

sigmoid, and radial basis functions. For each kernel function, 

we adjusted the associated parameters, and determined the 

global error rate over the training dataset.  

To determine which of these will best generalize over the 

testing dataset, we performed cross-validation over a dataset 

containing approximately one hour each of tremor, 

dyskinesia, and disorder-free data from both PD patients and 

controls. As a result of the training and validation process, 

we selected a DSVM that used a sigmoid kernel function 

with a trade-off coefficient ( ) of 0.125 and scale factor ( ) 

of 0.5 to detect dyskinesia. For the detection of tremor, we 

selected a DSVM that used a radial basis function with a 

trade-off coefficient ( ) of 1 and scale factor ( ) of 0.25.  

C. Testing 

After the training and validation were completed, we 

tested our DSVM-based systems on the same 29 hours of 

data from PD patients and 15 hours of data from healthy 

controls used to establish the performance level of our DNN-

based systems. Table II contains a comparison of the GER 

for tremor and dyskinesia recognition between the DNN-

based system and the DSVM-based system. We can see that 

the DSVM-based system outperforms the DNN-based 

system over intervals in which the patient is sitting. 

However, the DNN-based system has a lower GER overall. 

Overall, we see that there is no evidence of any significant 

performance improvement by substituting our DNN-based 

solution with our DSVM-based solution, at least within the 

parameters of keeping the same set of input features.  

V. CONCLUSION 

Despite the overall performance level reached by our 

previous DNN-based movement disorder recognition 

solution [2], we have seen that the misclassifications 

produced by this solution are not randomly distributed, 

performing not as well in the presence of certain movement 

states (e.g., walking). We attempted in this research to 

resolve these errors by replacing the original dynamic neural 

network transformations with dynamic support vector 

machines. However, this alternate signal processing 

approach had little impact on the performance of movement 

disorder recognition, both overall and in the presence of 

those troublesome movement states. 
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TABLE II 

COMPARISON OF DISORDER RECOGNITION BY DNN AND DSVM 

Movement 

Disorder 

 DNN  DSVM 

Sens Spec GER Sens Spec GER 

Tremor 93.4% 94.2% 6.2% 87.8% 97.8% 7.2% 

Dyskinesia 93.6% 89.0% 8.7% 90.0% 89.6% 10.2% 

 Comparison of performance of the DNN and DSVM systems for tremor 

and dyskinesia over the 44-hour testing database. Performance is measured in 

terms of sensitivity, specificity, and GER. The overall performance rates are 

based on the average of the conditional GERs found for each movement state. 
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