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Abstract—Language disorder is one of the core symptoms in 

schizophrenia. We propose a new framework based on machine 

intelligence techniques to investigate abnormal neural 

oscillations related to this impairment. Schizophrenia patients 

and healthy control subjects were instructed to discriminate 

semantically and syntactically correct sentences from 

syntactically correct but semantically incorrect sentences 

presented visually, and 248-channel MEG signals were recorded 

with a whole head machine during the task performance. 

Oscillation patterns were extracted from the MEG recordings in 

8 frequency sub-bands throughout sentence processing, which 

form a large feature set. A two-step feature selection algorithm 

combining F-score filtering and Support Vector Machine 

recursive feature elimination (SVM-RFE) was designed to pick 

out a small subset of features which could discriminate patients 

and controls with high accuracy. We achieved a 90.48% 

prediction accuracy based on the selected top features, following 

the leave-one-out cross validation procedure. These top features 

provide interpretable spectral, spatial, and temporal 

information about the electrophysiological basis of sentence 

processing abnormality in schizophrenia which may help 

understand the underlying mechanism of this disease. 

I. INTRODUCTION 

Schizophrenia is a chronic, severe, and disabling mental 
disorder that has affected people throughout history. 
Language impairment is recognized as one of the core 
symptoms associated with this disease. Behavioral research 
has demonstrated disturbances at multiple levels of language 
processing (sub-lexical, lexical, sentence and discourse) [1]. 
The importance of language in schizophrenia is such that this 
illness may be evolutionarily related to the development of 
language in Homo sapiens [2]. Consequently, understanding 
the physiological basis of language disorder in schizophrenia 
would shed light on the underlying mechanisms of the illness 
itself. 

Earlier research efforts that tried to understand the 
mechanisms of schizophrenia have focused on relating 
specific cortical regions to the psychotic symptoms, such as 
language disorder. However, more recent theories suggest that 
cognitive dysfunctions are not simply due to a spatially 
circumscribed deficit, but rather represent a distributed 
impairment involving many cortical areas and their 
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connectivity [3]. Accordingly, neural oscillations have now 
become a crucial target for schizophrenia research, due to 
their role in realizing flexible communication within and 
between cortical areas.  

Studies have shown that cognitive functions modulate 
neural oscillations at multiple frequencies simultaneously and 
differentially in terms of their frequency, location, and time of 
occurrence [4, 5]. Consequently, to get a better understanding 
of oscillatory activity, the full scale of the spectral, spatial, and 
temporal dimensions of brain oscillations need to be 
evaluated. Such multi-dimensional evaluation usually results 
in a dauntingly large scale data set (combination of number of 
frequency sub-bands, number of magnetoencephalogram 
(MEG) / electroencephalography (EEG) channels and number 
of time points). Machine intelligence techniques are 
well-suited to perform such comprehensive data analysis. For 
example, artificial neural network (ANN) [6] and linear 
discriminant analysis (LDA) [7] have been applied to 
discriminate schizophrenia patients and healthy control 
subjects, and achieved high classification accuracy. However, 
due to the complexity of the classifier, it is still difficult to 
understand the functional basis of the discrimination.  

Motivated by the above considerations, we designed an 
experiment to investigate abnormal neural oscillations 
associated with language processing impairment in 
schizophrenia. More specifically, we aimed at building a 
classifier which can achieve a high degree of discrimination 
between patients and healthy controls with a small subset of 
oscillation patterns that could be understood in terms of brain 
function. These discriminating features reflect the frequency, 
brain region and time of oscillations that are abnormal during 
language processing in schizophrenia, and may help us 
understand the underlying mechanism of this impairment. The 
detailed explanation of the experimental paradigm as well as 
the classification and feature selection strategy are described 
in Section II. The experimental results and conclusion are 
presented in Section III and IV, respectively. 

II. METHOD 

A. Outline and System Framework 

To investigate abnormal brain oscillation associated with 
language impairment, schizophrenia patients and healthy 
control subjects were instructed to perform a sentence 
processing task while multi-channel MEG signals were 
recorded to detect brain oscillation during task performance. 
Full scale spectral-spatial-temporal oscillation patterns were 
extracted from the MEG recordings to construct a rich feature 
set. A two-step feature selection algorithm based on F-score 
filtering [8] and SVM-RFE (support vector machine – 
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recursive feature elimination) backward elimination [9] was 
then employed to select the most informative features which 
could discriminate patients and controls with high accuracy. 
The frequency, space and time information contained in these 
discriminating features were examined for analyzing the 
language processing abnormality in schizophrenia. The 
system framework is shown in Figure 1. 
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Figure 1.  System framework. 

B. Subjects and Language Task 

Ten schizophrenia patients (10 male) meeting the 
DSM-IV diagnostic criteria and eleven healthy control 
subjects (9 male, 1 female) participated in this study. All the 
subjects were native English speakers and were right-handed. 
The patient group did not differ significantly (p<0.05) from 
the control group with respect to age, personal or parental 
level of education, and premorbid overall and verbal 
intelligence. The experimental protocol was approved by the 
Minneapolis VA Medical Center and the University of 
Minnesota Institutional Review Boards. 

Subjects were asked to distinguish between correct and 
incorrect sentence stimuli. Each stimulus is a set of five 
English words. A correct stimulus is a semantically and 
syntactically correct sentence (e.g., The boy ate the bagel.) 
while an incorrect stimulus is a syntactically correct but 
semantically incorrect sentence (e.g., The bagel ate the boy) . 
The elements in each stimulus were presented one at a time in 
the center of a monitor placed in front of the subjects, at a rate 
of one per second with 10 seconds inter-stimulus interval. The 
subjects were instructed to read the stimuli silently and press a 
button with their right index finger for incorrect stimuli. 

C. MEG Recordings 

During task performance, MEG signals were recorded 
with a sampling rate of 1KHz, using a 248-detector 
whole-head neuromagnometer equipped with first order axial 
gradiometer Magnes 3600 (4-D Neuroimaging, San Diego 
CA), in a 2-layer mu-metal magnetically shielded room 
(IMEDCO, Hagendorf, Switzerland). In parallel, 
Electrocardiogram (ECG) and electrooculogram (EOG) were 
recorded to identify and correct epochs contaminated by 
heartbeats and eye movements.  

As we were interested in detecting between-group 
oscillation differences during normal language processing, 
here we only analyze epochs with correct stimuli. Each epoch 
was defined to include a baseline period (3 seconds 
immediately before the first word) and an active period (8.5 
seconds after the onset of the first word). The active period 
includes a 5 seconds “encoding phase” (sentence 

presentation) and a 3.5 seconds “post-stimuli phase” (after 
sentence presentation). The timing diagram of the task is 
shown in Figure 2. After removing heartbeat and eye 
movement, 40 artifact-free trials for each subject were band 
pass filtered between 1 to 64Hz and down sampled to 256Hz 
for further analysis.  

3 sec 5 sec 3.5 sec

Baseline Encoding Post-stimuli

1 2 3 4 5

Words 

  Correct: The - boy - ate - the - bagel

  Incorrect: The - bagel - ate - the - boy

 

Figure 2.   Timing diagram of the semantic processing task 

D. Extraction of Oscillation Patterns 

Certain events like cognitive tasks can cause frequency 
specific changes of the ongoing oscillation activity and may 
lead to either decrease or increase of power in given frequency 
bands. The former case is called event-related 
desynchronization (ERD) and the latter event-related 
synchronization (ERS) [4]. To investigate neural oscillations, 
we computed ERD/ERS on multiple dimensions including 
frequency, time and space. As ERD/ERS contain frequency 
specific behavior, MEG signals were first filtered between 
1-48Hz and then decomposed into eight frequency sub-bands 
using a second order Butterworth filter. The bandwidth of 
each sub-band was 4Hz for the 1-16Hz range and 8Hz for the 
16-48Hz range. For each sub-band, power data were first 
averaged across all trials and then smoothed using a 250ms 
window with 125ms overlap. For each 11.5 seconds trial, the 
total time point was reduced to 92 per channel, including 24 
points in the baseline period (3 seconds) and 68 points (8.5 
seconds) in the active period. Finally, the ERD/ERS value was 
calculated as the percentage power change of each smoothed 
mean power data relative to the mean power within baseline 
period: 

                         
( )

( ) 100%
A i R

ERD S i
R


                          (1) 

where ( )A i  is the thi smoothed mean power sample and R is 

the average power of baseline period, which is calculated 

as
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  . The reason for using relative power 

change is to remove the additive effects like medication, 

coffee and tobacco consumption, as those effects affect both 

the baseline and the active period. 

E. Feature Selection and Classification 

Multidimensional evaluation of oscillations result in a 
very large ERD/ERS feature set: 8 frequency sub-bands*248 
MEG channels*92 time points per channel, leading to a total 
of 182,528 features per subject. Compared to the small sample 
size (21 subjects) and small number of groups to discriminate 
(patient group vs. control group), the features are in an 

4924



  

extremely high dimensional space. To avoid spurious group 
differences, we employed a classification based two-step 
feature selection algorithm to select a small sub-set of features 
that have highest discriminating power in patient and control 
classification. These top discriminating features reflect the 
frequency, brain region and time of oscillations that are 
abnormal during semantic processing in schizophrenia, and 
can help us understand the underlying mechanism of this 
impairment.  

In the two-step feature selection stage, we first used 
F-score filtering to eliminate large number of “garbage” 
features. F-score is a simple and generally effective technique 
to measure the discrimination of two sets of real numbers [8]. 

Consider n training samples: , 1, ...,kx k n and let the number 

of positive and negative samples be n and n respectively. 

Each sample is a vector with m features. The F-score of 

the thi feature is defined as: 
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where ix , ( )

ix , ( )

ix represent the averages of the thi feature 

of the whole, positive, and negative data samples, 

respectively;
( )

,
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k i
x  and
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,
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k i
x are the thi feature of 

the thk positive and negative sample, respectively. In short, 

the numerator indicates the discrimination between the 
positive and negative sets, and the denominator represents the 
discrimination within each of the two sets. The higher the 
F-score is, the more likely this feature is discriminative.  

After F-score filtering, large number of irrelevant features 
were eliminated except the top 150 features with the highest 
F-score were kept for next step feature ranking by SVM-RFE, 
a classification based feature selection algorithm [9]. 
Basically, it is a backward selection strategy using the weights 
of SVM model [10] to produce a feature ranking. Due to the 
nature of our dataset (small sample size vs. large feature 
number) as well as computational consideration, we employed 
linear kernel SVM, in which the weight vector w is obtained 

by solving the following quadratic optimization problem: 
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where kx is the training vector and {1, 1} ky is the 

corresponding class label;  k is the so called slack variable 

allowing margin errors and b is a bias term. C is a penalty 

parameter set by the users to control the tradeoff between 
margin size (generalization ability of the classifier) and the 
number of samples inside the slab (training error). To get the 
optimal C value, the training samples were subdivided into 
learning set and validation set. We used the learning set to 
build SVM models with different C values 

(
2

log { 1, 0, 1, ..., 10}C   ) and used these models to classify 

the validation set. The C value associated with the smallest 

validation error was used to build the final SVM classifier 
using all the training samples. Then the weight values in the 
classifier were squared and the feature with smallest weight 
was removed from the ranking list, based on the idea that the 
smaller the weight is, the less relevant the feature is. This 
procedure was repeated after all the features were removed 
from the list. According to the backward elimination 
characteristic of SVM-RFE algorithm, the later a feature is 
removed from the list, the higher its ranking is. 

To test the robustness and the generalization ability of the 
selected discriminating features, a leave-one-out double cross 
validation procedure [11] was performed. Each time, 20 
subjects were used for feature selection and training a SVM 
classifier based on the selected top features while the other 
one subject was used for testing the classification result. The 
testing sample was completely left out before testing and the 
procedures were repeated until all subjects were classified.   

III. RESULTS 

In Figure 3, we compare the discriminating power of the 
top features selected by our two-step feature selection 
algorithm with the features ranked by F-score only and using 
SVM-RFE only. The lowest prediction error based on the 
two-step feature selection algorithm is obtained with 53 top 
features. As presented in Table 1, a 90.48% overall prediction 
accuracy can be achieved for all the subjects. The 
classification accuracies for control group and patient group 
are 100% (true negative rate) and 80% (true positive rate), 
respectively. 
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Figure 3.  Prediction error rate versus feature number using different 

algorithms 

TABLE I.  PREDICTION RESULTS USING TOP 53 FEATURES 

(F-SCORE+SVMRFE) 

Control Patient Average 

error TN
a
 FP

b
 error TP

c
 FN

d
 error accuracy 

0/11 100% 0 2/10 80% 20% 2/21 90.48% 

a. True Negative Rate; b. False Positive Rate; c. True Positive Rate; d. False Negative Rate  

In comparison, the lowest prediction error based on the top 
features ranked only by F-score is 14.28% which is higher 
than the two-step algorithm. This is because F-score does not 
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reveal mutual information among features, i.e., the power of 
the combination of the features, which affects its 
generalization ability. Top features selected by using 
SVM-RFE directly without pre-selection can also achieve 
90.48% overall accuracy but needs more than 70 features. For 
analysis consideration, a smaller feature number may help 
better locate the dysfunctional brain region and frequency. In 
addition, from the view of computation, applying SVM-RFE 
directly without pre-selection is very time consuming in our 
case, due to its backward elimination characteristic and the 
large feature size fed into the algorithm. Thus, we use F-score 
filtering as a pre-selection step to remove large number of 
irrelevant features before applying SVM-RFE as a main 
feature selection step. The combination of the two algorithms 
not only help achieve a better discrimination with a smaller 
number of features but also reduce the time and complexity in 
computation. 

To better understand the underlying physiological 
characteristics of the discriminating features, we next present 
the time courses of 12 most often selected features and their 
spatial locations in Fig. 4. Other top features were similarly 
located, i.e., at adjacent time points, channels and frequency 
bands. We note that the spatial locations of the top features 
were not restricted to one specific cortical area, but rather 
involve several different brain regions, which support many 
recent theories that emphasize the role of disturbed 
coordination in the pathophysiology of schizophrenia [3]. 

 

Figure 4.  Top discriminant features (* denotes time point that discriminate 

between groups. Horizontal axis represents time: baseline (-3-0 sec), 

sentence presentation (0-5sec) and post-stimuli (5-8.5 sec). Vertical axis 

represents ERD/ERS value.) 

During sentence presentation, patients showed reduced 
delta band (1-4Hz) power at the left parietal-occipital and 
right temporal areas (ERD as opposed to ERS in controls); 
reduced theta band (4-8Hz) power at the occipital and right 
frontal lobes; as well as less alpha (12-16Hz) and beta (16-32 
Hz) band  ERS power at the left temporal-parietal and right 
frontal lobes. In addition, patients showed reduced delta band 
synchrony at the left frontal lobe after sentence presentation. 
Therefore, schizophrenia patients have reduced synchrony 
during both sentence presentation and integration periods, 
which indicate dysfunction during semantic processing as well 
as failure of neural system to resume idle state. 

IV. CONCLUSION 

In this study, we designed an experiment and employed 
machine intelligence methods to investigate the 
electrophysiological basis of language processing abnormality 
in schizophrenia. Specifically, we extracted 
spectral-spatial-temporal oscillation patterns from 248 MEG 
channels when subjects performed a sentence processing task. 
A two-step feature selection algorithm based on F-score 
filtering and SVM-RFE backward elimination was then 
performed to select a small subset of features which could 
discriminate patients and controls with high accuracy. 
Following the leave-one-out cross validation procedure, we 
achieved a 90.48% prediction accuracy using 53 top ranked 
features. These top features provide information about the 
frequency, location and time course of oscillations that 
differentiate between schizophrenia patients and healthy 
controls, which may help understand the underlying 
mechanism of the language processing abnormalities in 
schizophrenia. In the future, we will incorporate more feature 
selection and classification algorithms into the system and test 
the performance on a larger dataset. 
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