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Abstract— Neonatal seizures patterns evolve with changing
frequency, morphology and propagation. This study is an
initial attempt to incorporate the characteristics of temporal
evolution of neonatal seizures into our developed neonatal
seizure detector. The previously designed SVM-based neonatal
seizure detector is modified by substituting the Gaussian kernel
with the Gaussian dynamic time warping kernel, to enable the
SVM to classify variable length sequences of feature vectors
of neonatal seizures. The preliminary results obtained compare
favorably with the conventional SVM. The fusion of the two
approaches is expected to improve the current state of the art
neonatal seizure detection system

I. INTRODUCTION

Neonatal seizures are the most common neurological dys-

function in newborns. About one third of all neonatal seizures

are clinically visible [1] and many remain undetected in the

busy Neonatal Intensive Care Unit (NICU). Failure to detect

seizures and the resulting lack of treatment may result in

brain damage and in severe cases, death. A system that could

automatically detect and annotate seizures on the neonatal

electroencephalogram (EEG) would be extremely useful for

clinicians in the NICU.

A single neonatal seizure changes in frequency, morphol-

ogy and propagation. It was shown in [2] that changes in

morphology and frequency were present in more than a half

of the total neonatal ictal discharges. It can be seen in the

example shown in Fig. 1 where a seizure event starts with

high amplitude spikes and ends up with very low amplitude

spikes. The lack of strong inhibitory factors in immature

brain likely contributes to the propensity for spread of the

discharges. The changing morphology of the discharges may

be the result of a slow recruitment of additional neuronal

networks during ictus [2]. Clearly, a detector that can track

the seizure temporal evolution characteristics is expected to

reach better performance than the classifier that utilizes only

static seizure features.

Several ways to incorporate temporal evolution, signal

dynamics, contextual information, or sequentiality of the

data have been proposed in the literature. Depending on

the stage where such information can be introduced, the

methods can be divided into the feature, classifier, and

decision level categories. The feature level techniques focus
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on the extraction of short-term data dynamics. An example

would be temporal derivatives (delta coefficients) which are

widely used in speech processing and are derived from

either temporal differentiation or from regression analysis

[3]. The classifier level techniques try to model a longer-

term temporal evolution. Such methods include Support

Vector Machines (SVM) with various sequential kernels [4]

which have been used for a number of applications [4],

[5], [6]. Hidden Markov Models (HMM) have been widely

used to capture sequentiality of the data by uncovering the

underlying event structures [7]. The decision making level

techniques include smoothing filters such as moving average

or median filters, or more sophisticated Viterbi temporal

decoding [8] which incorporates the contextual information

before making the final decision.

There are striking differences between seizures in neonates

and those of older patients in ictal EEG patterns [2]. Al-

though a few attempts have been made to exploit the pattern

temporal evolution in the adult EEG [9], to the best of our

knowledge, the contextual information for neonatal seizure

detection has been either not exploited at all or introduced

in the later stages through simple decision smoothing [10].

In this contribution, the previously developed SVM-based

neonatal seizure detector [10] is modified by substituting the

Gaussian kernel with the Gaussian Dynamic Time Warping

Kernel (GDTW) [11] to enable the SVM classify variable

length sequences of EEG feature vectors.

II. DYNAMIC TIME WARPING KERNEL

A. Dynamic Time Warping

Dynamic Time Warping (DTW) gives a measure of the

similarity between two variable length sequences. Consider

two sequences P = (p1, ..., pn) and Q = (q1, ..., qm) with

lengths n and m A local distance dl = (pi − qj)
2 between

each element of the two sequences can be calculated to get

an alignment matrix of size m. A warp path W = w1, ..., wK

could be constructed in this matrix, where K is the length

of warp path. The kth element, wk = (i, j), of the warp path

represents a matching point of two sequences, where (i, j)
corresponds to ith and jth indexes of sequences P and Q

respectively. An alignment distance DW could be calculated

along a particular warp path W by

DW (P,Q) =
1

K

K
∑

k=1

dl(wki, wkj) (1)

Then by finding the optimal alignment path that gives

the shortest distance Dφ = min{DW (P,Q)}, the best

measure of similarity between the two sequences can be
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Fig. 1. Evolution of a single seizure event. (a) Slow wave activity at start with sharp/spike components involved high in amplitude, phase reversal. (b)
As the seizure progresses the EEG becomes lower in amplitude. (c) only very low amplitude discharges are seen with a flattening of the background.

found. Dynamic programming is used to find the path that

gives the shortest DTW distance in the alignment matrix.

B. Dynamic Time Warping in SVM

The SVM has shown good state of the art performance in

detecting seizures from the neonatal EEG [10]. SVMs are

discriminant classifiers that can transform complex insepa-

rable input data into high dimensional space which can be

easily classified using linear discriminant functions. Conven-

tional SVM techniques were developed for a fixed dimension

feature vectors which cannot perfectly deal with the dynamic

structure and length of neonatal seizures. Although, the

feature vectors extracted from each EEG segment are of fixed

length but a whole seizure event could result in a variable

length sequence of feature vectors. In order to handle this

problem, DTW was introduced inside SVM [11].

The classical SVM classifier uses a hyperplane to sep-

arate the input data. Consider a two class problem, with

a pre-labeled training set (x1, y1), ..., (xn, yn) where yi ∈
{−1,+1} and xi ∈ ℜ. In SVM classification, a test vector

u is assigned a class yi by evaluating

f(u) = sign

(

nsv
∑

i

αiyiK(u, xi) + b

)

(2)

where αi are Lagrange multipliers, b is the bias and xi are

nsv support vectors (SV). K is the kernel of the SVM and is

used to map the input data into a higher dimensional feature

space. A commonly used kernel function is the Gaussian

radial basis kernel defined as

K(xi, xj) = exp

(

− γ‖xi − xj‖
2

)

(3)

If P and Q are two sequences, then their kernel metric

can be found by replacing the euclidean distance in 3 by the

DTW distance Dφ, [11];

K(P,Q) = exp

(

− γDφ(P,Q)

)

(4)

This way, SVM with the GDTW kernel will be able to

classify the variable length sequences according to their

DTW distances and the SV concept is now replaced with

support sequences.

III. NEONATAL SEIZURE DETECTION

A. Dataset

The dataset used in this study is taken from the EEG of 18

full term neonates recorded in the NICU of Cork University

Maternity Hospital, Cork, Ireland. A Carefusion NicOne

video EEG monitor was used to record multichannel EEG

at 256Hz using the 10-20 system of electrodes placement.

8 bipolar EEG channels were used (F4-C4, C4-O2, F3-C3,

C3-O1, T4-C4, C4-Cz, Cz-C3, C3-T3) to annotate the data.

Seizures were annotated independently by two experienced

neonatal electro-encephalographers. The total length of the

all EEG recordings is 816h (hours) which constitutes 1389

seizure events of the duration varying from 10s (seconds)

to 40m (minutes). The EEG recordings were not edited

and no artifacts have been removed. So, this dataset is true

representative of the real time situation in hospitals.

B. SVM Based Seizure Detection System

1) Preprocessing and Feature Extraction: An overview of

the whole seizure detection system is shown in Fig.2. The

EEG is first down-sampled from 256Hz to 32Hz with an

anti-aliasing filter set at 12.8Hz. Each channel of the EEG

is then segmented into 8s epochs with a sliding window and

50% overlap. The 55 features used in this study are described

in [10]. The usability of these features have been discussed

in a number of previous works [10], [12].

2) Classification: After the features are extracted from

every epoch, the sequences are formed by grouping the

epochs into fixed length sequences of 10 epochs with a

shift of one epoch (i.e. a 90% overlap). These sequences

are then fed to the GDTW-SVM classifier. All channels are

classified separately as shown in Fig. 2. The decision of the

computed sequence is averaged with the decision of the one

past sequence, which corresponds to the moving average of
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Fig. 2. (a) Overview of the neonatal seizure detection system (b) Overview of the classification stage.
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Fig. 3. Histogram showing the length of seizures in the dataset.

two sequence decisions. This means that a decision is made

every 4s of the EEG.

3) Post-Processing and Multi-Channel Fusion: The out-

put of the classifier is converted to posterior probabilities

as in [10] using Platts method [13]. Then the procedure

employed for data annotation is used; if there is a seizure in

at least one channel, the whole epoch is marked as seizure,

otherwise it is denoted as non-seizure. This corresponds to

applying the ’MAX’ operator to the probabilistic values of

all channels. The output is then compared to a threshold.

In order to get the performance curves of the system, the

threshold is gradually varied from 0 to 1. Then a binary

decision is taken i.e. 1- seizure and 0-non-seizure. A collar

technique is applied in which every seizure decision is

extended from either side to compensate for the possible

difficulties in detecting onset and offset of a seizure event as

in [10].

C. Performance Assessment

The classifier was trained on the data of 17 patients from

the dataset and tested on the data of one remaining patient

that was not used in the training. The length of the EEG

recording for testing was 29.7h and had 17 seizure events

with a variety of lengths ranging from 17s to 234s. The mean

seizure length was 90s.

To quantify the system performance the epoch based sen-

sitivity and specificity, and the event based Good Detection

Rate (GDR) and the number of False Detections per hour

(FD/h) are reported. Sensitivity is defined as the percentage

of correctly detected seizure epochs and specificity is the

percentage of correctly detected non-seizure epochs. The

Receiver Operating Characteristic (ROC) curve is used to

plot the sensitivity and specificity of the system. In contrast

to sensitivity, GDR represents the percentage of correctly

identified seizure events.

D. Model Selection

In order to find the best GDTW kernel parameter γ and

generalization parameter C of SVM, a 2 fold cross validation

is applied on the training data of 17 patients. The 20m per

patient of EEG for the training data is annotated on per

channel basis to get training examples of the seizure class.

More details on per channel annotation can be found in

[14]. Sequences are formed by concatenating the consecutive

epochs that correspond to the same seizure event. As the

histogram in Fig. 3 shows that peak is around seizure

events of length 10 epochs, therefore a maximum seizure

sequence length of 15 epochs was chosen and seizures

greater than 15 epochs were chunked down to 10 epochs

seizure. Seizure events shorter than 15 epochs were taken

directly. Non-seizure sequences were taken with a fixed

length of 10 epochs. The total number of seizure and non-

seizure sequences used for training the classifier were kept

at a 1:1 ratio. After the optimal pair of parameters is found

in the internal 2 fold cross validation, the SVM classifier is

trained on the 5112 training sequences (2556 seizure, 2556

non-seizure) extracted from the 17 patients.

IV. RESULTS AND DISCUSSION

The performance of the designed GDTW-SVM system and

the system proposed in [10] is shown in Fig. 4 and Fig. 5.

Quantitatively, the ROC area of 95.41% is obtained by the

proposed system in comparison with that of 95.06% obtained

by the baseline system [10]. Fig. 5 compares the system in

terms of the event-based GDR vs. FD/h metrics. From the

figures, it can be seen that the system which exploits tem-

poral evolution characteristics of neonatal seizures reaches
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Fig. 4. ROC curves of the GDTW-SVM based and static SVM based
neonatal seizure detection system.
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Fig. 5. GDR versus FD/h curve of the GDTW-SVM based and static SVM
based neonatal seizure detection system.

similar performance. Both the ROC area and the GDR for the

same rate of false detections per hour are improved. With the

GDTW-SVM system 86% of the seizure events are correctly

identified at the cost of 1 FD/h. At the same cost the static

SVM based system reaches a GDR of 78%. It indicates that

introducing dynamic kernels increases both the number of

detected events and the correctly detected seizure burden (the

total time of the neonatal seizure activity).

Fig. 4 shows that the GDTW based system performs better

for higher sensitivity values whereas the static SVM based

system performs better for higher specificity values. This

observed complementary behavior is known to be a good

option for successful application of classifier combination

techniques. It can be expected that the fusion of the two

approaches can significantly improve the current state-of-the

art performance in the area of neonatal seizure detection.

In this work, the designed system is able to classify

variable length sequences. The proposed system was also

tested with the 15 epochs sequences but the results obtained

were worse. It is expected that the dynamic choice of testing

sequence length will provide an improved detection of both

the onset and the offset of the real variable duration seizures.

V. CONCLUSION

A preliminary attempt to incorporate contextual informa-

tion at the classifier level has been made in this work by

means of substituting the static kernels in the SVM with a

dynamic kernel. The obtained results are promising. However

more thorough evaluation and analysis of GDTW-SVM and

other approaches on different levels is necessary to reach

solid conclusions. This will be part of our future work.
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